
Staff Engineer
Leadership beyond the management track

Will Larson

Copyright © 2021 by Will Larson

All rights reserved. No part of this book may be reproduced or used
in any manner without written permission of the copyright owner ex‐
cept for the use of quotations in a book review. For more information,
please address: will@lethain.com.

ISBN: 978‐1‐7364179‐0‐4

EARLY RELEASE, v0.1

www.staffeng.com

Typos or issues? Report them here

2

https://www.staffeng.com
https://airtable.com/shr416F1GqPYr1KqE

Contents
Acknowledgments . 3
Foreward . 4
Preface . 5

Overview 7
Staff engineer archetypes . 9
What do Staff engineers actually do? 17
Does the title evenmatter? . 24

Operating at Staff 29
Work on what matters . 32
Writing engineering strategy 40
Managing technical quality . 48
Stay aligned with authority . 67
To lead, you have to follow . 72
Learn to never be wrong . 75
Create space for others . 80
Build a network of peers . 86
Present to executives . 91

Getting the title where you are 97
Promotion packets . 103
Find your sponsor . 107
Staff projects . 112
Get in the room, and stay there 119
Being visible . 124

Switching companies to get the title 128
Finding the right company . 133
Interviewing for Staff-plus roles 139
Negotiating your offer . 143

Stories 145
Michelle Bu - Payments Products Tech Lead at Stripe 146
Ras Kasa Williams - Staff Engineer at Mailchimp 166
Keavy McMinn - Senior Principal Engineer at Fastly 176
Bert Fan - Senior Staff Engineer at Slack 182
Katie Sylor-Miller - Frontend Architect at Etsy 188
Ritu Vincent - Staff Engineer at Dropbox 201

1

Rick Boone - Strategic Advisor to Uber’s VP of Infrastructure . . . 210
Nelson Elhage - Formerly Staff Engineer at Stripe 221
Diana Pojar - Staff Data Engineer at Slack 231
Dan Na - Staff Engineer and Team Lead at Squarespace 240
Joy Ebertz - Senior Staff Software Engineer at Split 247
Damian Schenkelman - Principal Engineer at Auth0 258
Dmitry Petrashko - Tech Advisor to the Head of Infra at Stripe . . . 270
Stephen Wan - Staff Engineer at Samsara 280

Resources 292
Additional resources on Staff-plus engineering 292
Where do Staff-plus engineers fit into the org? 298
Managing Staff-plus engineers 302
Designing a Staff-plus interview loop 307
Staff-plus career ladders . 313

2

Acknowledgments

Cover illustration by Luciana Guerra.

Ty for folks for advice on the book itself

Typography advice

Foreword author

Interviewees

Laurel

Tech reviewers: Sid, Gary, Pat, Gergely, Pete

Github PR submitters

3

https://lucianaguerra.com
https://twitter.com/laurelcodes
https://www.linkedin.com/in/siddharthsarda/
https://twitter.com/LamGary
https://patkua.com
https://blog.pragmaticengineer.com
https://thepete.net

Foreward

Hello, this is a foreward, written by a person.

4

Preface

When folks ask about writing my first book, An Elegant Puzzle, I say
that I wrote half of it over ten years and the other half in six months.
Its creationwas a challenge at times, and there aremany things I’d love
to change in the final product, but creating it was a personal highlight.
As an author, you’re supposed to warn prospective authors away from
writing a book, but I have no such warning, even to myself: I wanted
to write another book.

The question was, what book? I might have more to say about engi‐
neering management at some point, but I certainly don’t have much
more to say there now. I’ve spent more time as a manager than as a
developer, and there are other folks far better situated to write about
effective development. I hope to write a book about infrastructure en‐
gineering one day, but I’m trying to spend less time thinking about in‐
frastructure for the next few years.

Eventually, I cameback to two core questions. What’s an area that chal‐
lenges me today? What’s a topic where I believe a book could nudge
the technology industry in a positive direction? The issue that fit both
bills was the role of the Staff Engineer. In most professions, folks be‐
come increasingly sure of their role as they become more senior, but
it’s been my experience that many engineers lose their sense of direc‐
tion after reaching their first Staff, equivalent, ormore senior role. It’s
horrifying to watch folks pursue a Staff Engineer role for a decade or
more, and then find that they despise the work or feel unequipped to
succeed.

More than personally digging into the topic of finding and operating
in these sort of Staff and post‐Staff–which I call Staff‐plus in this book–
roles, I also recognized that different folks have a very different ex‐
perience of reaching these roles. Some of the most talented folks I’ve
workedwith struggled to pass the Senior Engineer level, encountering

5

systematic barriers that continually push their promotion one cycle
further out.

My first step was to outline the chapters and topics I wanted to write
about, and what followed was a series of interviews where I was able
to learn from the remarkable stories of folks reaching their first Staff
Engineer role, and then also operating within those roles on the other
side. These stories combined with my experience promoting and sup‐
porting Staff Engineers as a manager, and slowly built into this book.

Technology is a young industry, “the way things work” is far from de‐
cided, and it’s in all of our hands to push towards an equitable and
effective vision of technical leadership. If you have a clear view of
what a Staff Engineer has to be, I hope this book pushes you to chal‐
lenge your beliefs a bit, even if you don’t change your mind afterward.
If you’re still building your view of what a Staff Engineer ought to be,
then I hope this book helps you refine that picture a bit.

6

Overview

Atmost technology companies, you’ll reach Senior Software Engineer,
the career level for software engineers, in five to eight years. At that
level, your company’s career ladder won’t require you to work towards
the next promotion, and being promoted beyond it is exceptional
rather than expected. At that point, your career path will branch,
and you have to decide between remaining at your current level,
continuing down the path of technical excellence to become a Staff
Engineer, or switching into engineering management. Of course,
the specific titles vary by company, and you can replace “Senior
Engineer” and “Staff Engineer” with whatever your company prefers.

Over the past few years, we’ve seen a flurry of books unlocking the en‐
gineering management career path, like Camille Fournier’s The Man‐
ager’s Path, Julie Zhuo’s The Making of a Manager, Lara Hogan’s Re‐
silientManagement andmy ownAnElegant Puzzle. Themanagement
career isn’t an easy one, but increasingly there are maps available for
navigating it.

On the other hand, the transition into Staff Engineer, and its further
evolutions like Principal and Distinguished Engineer remains chal‐
lenging and undocumented. What are the skills you need to develop
to reach Staff Engineer? Are technical abilities alone sufficient to
achieve and succeed in that role? How do most folks move into this
role? What is your manager’s role in helping you along the way? Will
you enjoy being a Staff Engineer, or will you toil for years to achieve a
role that doesn’t suit you?

Inmy engineeringmanagement career, I’ve developed an increasingly
clear point of view on answering those questions around the Staff En‐
gineer role, but my perspectives are shaped by my own experiences,
and I believe it’s important to go beyond boldly presenting my beliefs
as universal truths. In writing Staff Engineer, I interviewed more than

7

https://lethain.com/mailbag-beyond-career-level/
https://www.amazon.com/Managers-Path-Leaders-Navigating-Growth/dp/1491973897
https://www.amazon.com/Managers-Path-Leaders-Navigating-Growth/dp/1491973897
https://www.amazon.com/Making-Manager-What-Everyone-Looks/dp/0735219567/
https://resilient-management.com
https://resilient-management.com
https://www.amazon.com/Elegant-Puzzle-Systems-Engineering-Management/dp/1732265186

a dozen Staff‐plus engineers across the industry about their lived ex‐
periences, and have folded their experiences into my own to create
something richer in nuance, breadth, and perspective than I could
have ever written on my own.

If you’re already in a Staff‐plus role, I hope these writings will energize
you in your journey as a leader outside the management track. If you
aim for such a role, I hope they will provide a pragmatic aid in its pur‐
suit. This book can be read cover to cover, but depending on which
of those best describe you, feel jump to the sections that sound most
interesting.

• Overview ‐ a survey of the Staff Engineer role, how it varies by
company, and why the title matters

• Operating at Staff ‐ how to do the work on the other side of the
title

• Getting the title where you are ‐ how to attain a Staff‐plus role
at your current company

• Switching companies to get the title ‐ when and how changing
companies can support the pursuit of a Staff‐plus title

• Stories ‐ collected stories from Staff‐plus engineers about what
they do and how they reached their role

• Resources ‐ a collection of templates and further readings if
you’re looking for more

Every company puts its own spin on Staff‐plus roles, so it’s likely that
somepartswon’tmap to your experience. If that’s the case, please take
what resonates and discard what doesn’t!

8

Staff engineer archetypes

Most career ladders define a single, uniform set of expectations for
Staff engineers operatingwithin the company. Everyonebenefits from
clear role expectations, but career ladders are a tool that applies better
against populations than people. This is particularly true for Staff‐plus
engineers, whose career ladders oftenpaper over several distinct roles
hidden behind a single moniker.

The more folks I spoke with about the role of Staff‐plus engineers at
their company, the better their experiences began to cluster into four
distinct patterns. Most companies emphasized one or two of the pat‐
terns, and one pattern only existed in companies withmany hundreds
or thousands of engineers. A few companies didn’t feature any tech‐
nical leadership pattern and pushed all their experienced engineers
towards engineering management. In literature, recurring character
patterns are called archetypes, such as the “hero” or the “trickster,”
and the archetype term is helpful for labeling these frequent variants
of Staff‐plus engineers.

The four common archetypes of Staff‐plus roles I encountered are:

• The Tech Lead guides the approach and execution of a particu‐
lar team. They partner closely with a single manager, but some‐
times they partner with two or three managers within a focused
area. Some companies also have aTech LeadManager role, which
is similar to theTechLead archetypebut exists on the engineering
manager ladder and includes people management responsibili‐
ties.

• The Architect is responsible for the direction, quality, and ap‐
proachwithin a critical area. They combine in‐depth knowledge
of technical constraints, user needs, and organization level lead‐
ership.

• The Solver digs deep into arbitrarily complex problems and

9

https://lethain.com/perf-management-system/

finds an appropriate path forward. Some focus on a given area
for long periods. Others bounce from hotspot to hotspot as
guided by organizational leadership.

• The Right Hand extends an executive’s attention, borrowing
their scope and authority to operate particularly complex
organizations. They provide additional leadership bandwidth
to leaders of large‐scale organizations.

This taxonomy is more focused on being useful than complete, but so
far, I’ve been able to fit every Staff‐plus engineer I’ve spoken to into
one of these categories. Admittedly, some folks are easier to classify
than others.

Tech Lead

Figure 1: Example calendar for a Tech Lead archetype

Stories featuring Tech Lead archetpye: Diana Pojar, DanNa, Ritu Vincent

Tech Leads are the most common Staff archetype and lead one team or
a cluster of teams in their approach and execution. They’re comfort‐

10

able scoping complex tasks, coordinating their team towards solving
them, and unblocking them along the way. Tech Leads often carry
the team’s context and maintain many of the essential cross‐team
and cross‐functional relationships necessary for the team’s success.
They’re a close partner to the team’s product manager and the first
person called when the roadmap needs to be shuffled.

Earlier in their career, they will have implemented their team’s most
complex technical projects, but at this point, they default to delegating
such projects across the team. They do this both to grow their team‐
mates and in acknowledgment that the team’s impact grows as theTech
Lead’s codingblocks shrink. While they’re coding less, they are still the
person defining their team’s technical vision, and stepping in to build
alignment within the team on complex issues.

The Tech Lead role is, formany folks, their first experience as a Staff en‐
gineer. A few forces conspire towards that result. First, the Tech Lead
role tends to develop early onwithin companies that have a strong con‐
cept of team, which is common among companies using agilemethod‐
ologies, andmost companies attempt an agile approach at some point.
Another factor is that the day‐to‐day work of a Tech Lead is most simi‐
lar to the work you’d already be doing as a Senior engineer, making it
a fairly intuitive transition. Most importantly, an organization needs
roughly one Tech Lead for every eight engineers, making it far more
common than other archetypes.

Somewhat confusingly, some companies use Tech Lead as a title, and
others use it as a role. In this list of archetypes, the Tech Lead is one
approach to operating as a Staff engineer, but it’s quite common to per‐
form the Tech Lead role without having the impact expected of a Staff‐
level engineer. Indeed, you’ll find non‐Staff engineers acting with the
behaviors of every archetype. Being a Staff‐engineer is not just a role.
It’s the intersection of the role, your behaviors, your impact, and the
organization’s recognition of all those things.

11

Architect

Figure 2: Example calendar for Architect archetype

Stories featuring Architect archetype: Joy Ebertz, Katie Sylor‐Miller,
Keavy McMinn

The Architect title has fallen out of style in many companies, but the
Architect role remains alive and well for folks operating at Staff‐plus
levels. Architects are responsible for the success of a specific technical
domainwithin their company, for example, the company’s API design,
frontend stack, storage strategy, or cloud infrastructure. For a domain
to merit an Architect, it must be both complex and enduringly central
to the company’s success.

There is a toxic preconception that Architects design systems in isola‐
tion and then pass their designs to others to implement. That does
happen in some cases, but reciting that stereotype would slander the
architects I interviewed. Influential architects dedicate their energy
to maintaining an intimate understanding of the business’ needs,

12

their users’ goals, and the relevant technical constraints. They use
that insight to identify and advocate for effective approaches within
their area of focus, and do it with organizational authority that they’ve
earned by demonstrating consistently good judgment.

The Architect role tends to evolve in relatively large companies, com‐
panies with exceptionally complex or coupled codebases, and com‐
panies that are struggling to repay the technical debt they created in
their initial sprint to product‐market fit. Some companies push for
Architects to remain deep in the codebase, and others set a clear expec‐
tation that Architects must not write code: both models work for some
companies.

Solver

Figure 3: Example calendar for Solver archetype

Stories featuring Solver archetype: Bert Fan, Nelson Elhage

The Solver is a trusted agent of the organization who goes deep into
knotty problems, continuing to work on them until they’re resolved.

13

Folks in this role aremovedontoproblems identifiedbyorganizational
leadership as critical and either lacking a clear approachorwith a high
degree of execution risk.

Where most Staff‐level roles require a very heavy dose of organiza‐
tional wrangling, the Solver generally operates on problems that are
already identified as organizational priorities and thus are called on to
do relatively little org‐level chiropractics. On the other hand, they gen‐
erally stop working on problems once they’re contained, which can
create the feeling of transience and requires a soft touch to avoid infu‐
riating the teams left behind to maintain the “solved” problem.

The Solver is most common in companies that think of individuals,
rather than teams, as the atomic unit of planning and ownership. In
such companies, it’s common to see the Solver becomeprevalent in the
place of the Tech Lead. You’re less likely to encounter this role at tra‐
ditionally managed sprint‐centric companies until those companies
become relatively large or long‐lived enough to acquire their own va‐
rietal of technical debt.

Right Hand

Stories featuring Right Hand archetype: Michelle Bu, Rick Boone

The Right Hand is the least common of the archetypes, showing up
as an organization reaches hundreds of engineers and is akin to oper‐
ating as a senior organizational leader without direct managerial re‐
sponsibilities. Rick Boone compared his role to the Hand of the King
in Game of Thrones and LeoMcGarry from TheWestWing, operating
with the borrowed authority of a senior leader. However, borrowing
authority comes with the obligation of remaining deeply aligned with
that leader’s approach, beliefs, and values.

Folks in this role attend their leader’s staffmeetings and work to scale
that leader’s impact by removing important problems from their plate.

14

https://lethain.com/weak-and-strong-team-concepts/
https://lethain.com/weak-and-strong-team-concepts/
https://awoiaf.westeros.org/index.php/Hand_of_the_King
https://westwing.fandom.com/wiki/Leo_McGarry
https://lethain.com/staying-aligned-with-authority/

Figure 4: Example calendar for Right Hand archetype

Problems addressed at this level are never purely technical and in‐
stead involve the intersection of the business, technology, people, cul‐
ture, and process. Right Hands often dive into a fire, edit the approach,
delegate execution to the most appropriate team, and then pop over
to the next fire elsewhere in the organization. The joy of these roles is
that you only work on essential problems. The tragedy is that you’re
always on to the next issue by the time those problems are solved.

Which is right for you?

As you think about which of these archetypes would fit you, start by
reflecting on the kinds of work that energize you, and then consider
which roles are available within your company.

All companies develop a need for engineers who can fill the Tech Lead
role, which makes it the most accessible archetype to attain your first
Staff engineering role. Companies that emphasize individual owner‐
ship rather than team ownership often develop the Solver early. On

15

the other hand, companies that operate under strict sprints or agile
methodologies tend to develop that role late, if ever. In the recent
crops of fast‐growing technology companies, the Architect and Right
Hand roles have generally emerged as the organizations reached one
hundred and one thousand engineers, respectively, and simply don’t
exist beforehand. Companies with other strains of cultural DNA often
develop them earlier, or sometimes never.

Success in these roles requires remaining engaged; it’s essential to un‐
derstandwhat kinds of work energize you. The Tech Lead andArchitect
tend to work with the same people on the same problems for years,
developing a tight sense of team and shared purpose. Some months
their focus will be a top company priority, and sometimes they’ll be
humming along so well that executives forget their team exists.

The Solver and Right Hand bounce from fire to fire, often having more
transactional interactions with the folks they’re working with on any
given week. They’re tightly aligned with executive priorities and are
likely to receive recognition for addressing leadership’s most pressing
problems. On the other hand, while they’ll nominally be on a team
with other folks, therewill generally be little‐to‐no overlapwithin their
team’s areas of focus, and they’ll often have a limited sense of commu‐
nity.

For each archetype, you’ll find folks who love it and find it deeply re‐
warding, along with folks who find the work despair‐inspiring. While
it’s important to aim towards an archetype that fits you well, it’s also
worth remembering that over your thirty or forty‐year career, you’ll
have long enough to spend some time sampling every archetype.

16

https://lethain.com/forty-year-career/

What do Staff engineers actually do?

The role of a Staff‐plus engineer depends a lot on what the
team needs and also what the particular engineer’s strengths
are. From my experience, the responsibilities of a Staff‐plus
engineer can change over time. Still, usually, their main focus
is working on projects/efforts that have strategic value for the
company while driving technical design and up‐leveling their
team. ‐ Diana Pojar

Anyone who has been cornered by relatives at a party and asked to
explain what software engineers actually do knows that explaining
the work can be challenging. Over time you may have created a
compelling answer for your relatives, but many folks’ minds go blank
when their coworker leans over and asks, “What’s a Staff engineer
do?”

The most straightforward answer is that Staff engineers keep doing
much of what made them successful as Senior engineers: building
relationships, writing software, coordinating projects. However,
that’s a misleading answer. Staff engineers do those same tasks, but
whereas previously they were the core of their work, now they’re
auxiliary tasks. Their daily schedule varies a bit by archetype, but
there’s a shared foundation across all archetypes: setting and editing
technical direction, providing sponsorship and mentorship, injecting
engineering context into organizational decisions, exploration, and
what Tanya Reilly calls being glue.

Setting technical direction

I feel most impactful when I can facilitate setting a technical
vision for an area and get people moving toward that vision.
I think we would all agree that we want our code to be better
architected than it is or improved in some way. However, I’ve

17

https://noidea.dog
https://noidea.dog/glue

found that often people have some vague sense of wanting better
without having a clear idea of what that thing they want is. I
like to help the group decide on a shared understanding ofwhere
exactly they’re trying to get (it’s actually okay if we never get
there) and come upwith a general game plan of how to get there.
‐ Joy Ebertz

Much as the Lorax speaks for the trees in his popular children’s book,
Staff engineers speak for their companies’ technology. Technology
cannot speak for itself and requires effective advocates on its behalf.
Folks who successfully advance technology are pragmatic, deliberate,
and focus more on the long‐term trend of progress than viewing each
individual decision as amake‐or‐break crisis. It can be helpful to think
of this as being a part‐time product manager for technology.

Some Staff‐plus engineers are explicitly hired to lead a specific area
such as API design, and in other cases, they find themselves editing
and aligning approaches across a broad area. One constant across all
roles is that the reality of setting technical direction is far more about
understanding and solving the real needs of the organization around
you and far less about prioritizing technology and approaches that you
personally are excited to learn about. In earlier roles, you may have
tried to influence decisions towards technology choices you were mo‐
tivated by; in senior positions, you’re accountable to the business and
organization first and yourself second.

Mentorship and sponsorship

In my current role, I feel energized when someone I’ve spon‐
sored sends an announcement that they’ve shipped their work,
or when I see that I’ve helped shape or shift an engineering
team’s model of an important topic. It’s these teams, not
me, who are doing the hard work day‐to‐day of building and
supporting their technology. I measure my impact based on

18

https://en.wikipedia.org/wiki/The_Lorax

their progress and, more importantly, the directionality of
that progress and the alignment of their work to the company’s
goals. ‐ Michelle Bu

There’s a popular vision of heroic leadership that centers on extraordi‐
narily productive individuals whose decisions change their company’s
future. Most of those narratives are intentionally designed by public
relations teams to create a good story. You’re farmore likely to change
your company’s long‐term trajectory by growing the engineers around
you than throughpersonal heroics. The bestway to grow those around
you is by creating an active practice of mentorship and sponsorship.

Sometimes folks see a requirement for mentorship in their career lad‐
der and try to mechanically check that box, which is a shame because
mentorship is one of the most valuable activities in a Staff‐plus role.
Sharing your experience and advice, along with building an ongoing
relationship to understand the recipient’s context, is high impactwork.
The most effective Staff engineers pair a moderate amount of men‐
torship with considerably more sponsorship: putting your thumb di‐
rectly on the scale to help advance and support those around you. If
you haven’t read it already, LaraHoganhaswritten the canonical piece
on the distinction between sponsorship and mentorship, What does
sponsorship look like?

Providing engineering perspective

I have a seat at the table at higher level engineering discussions
that occur at a level above individual projects and teams. We
have recurring staff engineering meetings where we discuss
problems that span teams which are both technical and
non‐technical in nature. ‐ Dan Na

Effective organizations streamline routine decision making. A good
example of this is the process of reviewing contracts for potential en‐

19

https://larahogan.me/blog/what-sponsorship-looks-like/
https://larahogan.me/blog/what-sponsorship-looks-like/

terprise customers. Early on, there will be some contracts signed that
the product and engineering teams are uncomfortable supporting. Af‐
ter that happens a few times, the process will include more stakehold‐
ers in the review steps, and over time the right people will be in the
right places at the right time.

Even companies that are great atmaking routine decisions often strug‐
gle when an unexpected decision shows up. The sort which is both
time‐sensitive and important, and it’s challenging to evenpull the right
folks together before the decision needs to get made. It’s frequent
for an organizational restructure to occur without valuable input that
would have changed the outcome. Similarly, it’s common for interview
loops for infrequent roles–thosewhere youmight hire one person into
themeach year like executives or Staff‐plus engineers in an early‐stage
company–to not evaluate the candidate on an important dimension.
For some companies, even things like roadmap planning fall into this
category.

Staff‐plus engineers are the folks who will often get unexpectedly
pulled into the room where this sort of decision is happening. This
gives them the opportunity to inject the engineering context and
perspective into a decision while it’s still possible to change the out‐
come. These brief moments of input on critical decisions are unduly
impactful and will allow you to inject an engineering perspective
where it would otherwise be missed. Just remember that you’re
representing the interests of all of engineering, not just your own.

Exploration

In my current role within the incubator, I’m spending all day
prototyping, but in my previous tech lead role, I did a lot of
different things. ‐ Ritu Vincent

Hill‐climbing is a simple optimization algorithm. Imagine you’re

20

https://lethain.com/running-an-engineering-reorg/
https://en.wikipedia.org/wiki/Hill_climbing

standing on a mountain somewhere and want to get to the top. You
turn around in a circle, identify the highest nearby point, and then
walk there. Once you get there, you turn around in a circle again, find
the highest nearby point from your new location, and go there. If you
keep doing this, you’ll get to the top of whatever mountain you’re on.
However, imagine you tried this on a foggy day. Because you can’t see
very far, you might get to the highest nearby point and later realize
there was a much higher point just out of sight.

Hill‐climbing can’t solve every problem, but it’s so effective that many
companies struggle to take other approaches. This can be a consumer‐
oriented company struggling to support enterprise deals or a mature
company struggling to compete with a smaller competitor’s release ca‐
dence. It can even be the case that your current business is so valuable
that it’s hard to prioritize new businesses, even though the valuable
business’ growth rate is trailing downwards.

In the long‐term, companies either learn to explore, or they fade away;
this isn’t an ignorable challenge. Simply assigning a team that’s mas‐
tered hill‐climbing to do exploratory work is far from a sure thing,
so many companies take a different approach. They find a couple
of trusted individuals with broad skills, allocate some resources, and
check back in a few months later to see what they’ve discovered. One
of those engineers is often a Staff engineer.

This isn’t always a business problem either; it can be any ambiguous,
important problem that the company’s systems are ill‐shaped to ad‐
dress. It might be reducing your infrastructure costs by an order of
magnitude. It might be identifying a multi‐region strategy that takes
six months instead of three years. It might be addressing the sudden
realization that your primary database only has three months of re‐
maining disk space, and you can’t upgrade to a larger size (in my expe‐
rience, a surprisingly frequent problem at fast‐growing startups).

21

https://en.Wikipedia.org/wiki/The_Innovator's_Dilemma
https://lethain.com/how-to-invest-technical-infrastructure/

This is some of the most rewarding and the riskiest work companies
do. It takes a great deal of organizational trust to be trusted with this
work, including having enough respect from the business that if you
fail, it’s a reflection on the problem and not you.

Being Glue

Tanya Reilly wrote a wonderful post, Being Glue, which captures an‐
other core element of successful Staff engineers: doing the needed,
but often invisible, tasks to keep the team moving forward and ship‐
ping its work. It’s not glamorous, but high impact organizations often
have one ormore Staff engineerworking behind the scenes expediting
the most important work and ensuring it gets finished.

But will you still write software?

It’s impolite to end any discussion of the Staff engineer role without
opining on the first question that Staff engineers ask when they con‐
gregate in a room together: “Do you still find time to write software?”
The answer is, of course, it depends!

Ras Kasa Williams said, “I still contributed code regularly—certainly
less than the rest of the engineers on my team; but it was important
that I sustained”hand to keyboard” work to ensure that my technical
strategy (and other macro‐level decision–making) was informed by
the on–the–ground experiences of the rest of my team.”

Katie Sylor‐Miller said, “I’m a frontend architect, but by far the main
thing I’ve been writing lately is SQL, because I’m doing a lot of data
analysis. I’ve been looking at our performance metrics to figure out
where the areas for improvement are, and what would be the most
impactful issues to fix to improve performance and business metrics.
I will write little bits of JS or PHP here and there, but it’s mostly to help
unblock teams or to run small performance‐related experiments.”

22

https://noidea.dog
https://noidea.dog/glue

Joy Ebertz said, “The more senior you get, the less your job is about
code. Sure, unlike a people manager, you still have a very technical
slant, and even through principal, you’ll likely be doing at least some
coding. However, the higher you get, the more your job becomes
about mentoring and growing the people around you (and more
broadly), building your team through building your company’s public
tech brand, noticing larger technical trends that can be improved
upon or corrected, helping to set the tech vision for your team or the
company and advocating for resourcing for tech debt projects.”

Most write some, some write none, but none write as much as they
used to earlier in their career. There will be the occasional week that
is purely coding, but those won’t be the norm, and if they happen too
often, it’s usually a sign of working on something comfortable rather
than important. Even if you’re not writing much, you’ll be reading a
ton of your coworkers’ code and doing a fair number of code reviews.

Slow but rewarding

One unifying theme across Staff‐plus work is that the timeframes are
longer. Early in your career, it’s easy to get attached to software devel‐
opment’s quick feedback cycle–write, test, ship, repeat–and most of
the work you’ll be doing at this level replaces that feedback loop with
one that takes weeks, months, and years. These longer timeframes
can feel surprisingly demoralizing when you first take on a Staff‐plus
role. It’s normal to end some days as a Staff‐plus engineer feeling like
you haven’t accomplished anything–keep at it!

The impact and the personal growth lives in those longer timeframes,
and while everyone I spoke with wished they’d occasionally get more
time to code, and admitted worrying some days that they weren’t ac‐
complishing much, none of them regretted their transition into their
current roles.

23

Does the title evenmatter?

If you’re safely nestled within the comfortable clutches of the Senior
Engineer career level, you might wonder if you ought to pursue the
Staff title. It’s a considerable investment of time and energy, along
with requiring a good amount of luck. Is that investment worth your
time?

The answer is, of course, that it might be! The three consistent advan‐
tages that generally come with a Staff‐plus title are:

1. allowing you to bypass informal gauges of seniority,
2. facilitating access to “the room,”
3. increase in current and career compensation.

A potential fourth advantage is that some folks find that the title grants
more agency to select the projects youwork on, but others find that in‐
crease in agency is swallowed by a commensurate increase in account‐
ability to the business.

Informal gauges of seniority

When I spoke with Nelson Elhage about whether reaching the Staff
level allowed him to take on new work, he answered:

The question of “allowed” is interesting and might not be quite
the right question because therewere very few official policies on
who got what kind of role. Most things relied on more informal
gauges of seniority.

Many technology companies describe themselves as pursuing meri‐
tocracy, defined as creating the conditions for talented employees to
rise to the top naturally. Given there isn’t any widely accepted mea‐
sure of individual merit, such companies come to rely on what Nelson
aptly termed “informal gauges of seniority.” While these gauges are be‐
lieved to evaluate ideas objectively, their sheer informality becomes a

24

https://lethain.com/career-levels-and-more/

broad vector of bias and often conflate confidence with competence.

Freedom from the cycle of re‐establishing one’s competence came up
frequently as a key advantage of the Staff title. These informal gauges
weren’t mentioned by every Staff‐plus engineer I spoke with, but they
were routinely mentioned by individuals who didn’t conform to their
company’s stereotype of an experienced technologist.

Keavy McMinn shared,

When you have a title, you don’t have to spend so much energy
putting your credentials on the table. It helps set the context for
others. You’re more respected from the outset, and that’s been
really noticeable.

A Staff‐plus title allows you to reinvest the energy you’ve previously
spent on proving yourself into the core work you’re evaluated on. If
you find that you’re not investing much energy into proving yourself,
that’s great! Perhaps you’ve been at your current company long
enough and proven yourself enough times that it’s no longer an issue.
If you do find your time diverted towards proving and reproving
yourself, the title will return a considerable measure of time to you
for reinvestment.

Being in the room

Another frequent advantage of a Staff‐plus title is “being in the room.”
Dan Na described this as,

I have a seat at the table in higher‐level engineering discussions
that occur at a level above individual projects and teams. We
have recurring staff engineering meetings where we discuss
problems that span teams which are both technical and
non‐technical in nature. As a hypothetical example, I’d feel
comfortable surfacing what I perceive as shortcomings in the
engineering onboarding process in this type of meeting.

25

For any important decision, there’s the time leading up to the core de‐
cision being made, and then there’s everything afterward. In more
senior roles, you’re often in the right place to provide input when it’s
relatively cheap to incorporate, where otherwise your feedbackmight
not be incorporated–despite being very valuable–because the related
roll out or implementation has advanced too far.

Compensation

Small companies tend to have fairly ad‐hoc compensation, and
increases come from direct negotiation with your manager. A pro‐
motion to a Staff‐plus role in such a company might not even come
with a corresponding increase in your compensation. However, most
companies introduce compensation bands for each role by the time
they reach one to two hundred folks. Those compensation bands will
generally ensure your compensation increases along with the role.

The highest‐paid roles at any company tend to be the executive and
senior management roles. As companies grow, they typically create a
compensation mapping between management and engineering roles,
such that reaching Staff‐plus roles (and sometimes this is Sr Staff or
Distinguished roles rather than the initial Staff role) will significantly
bump your compensation.

Even if your current company doesn’t compensate for Staff‐plus engi‐
neer roles much differently than for Senior engineer roles, some com‐
panies do. Throughout your career, you can choose to steer towards
such companies, and doing so with a Staff‐plus title will meaningfully
increase your lifetime earnings.

Access to interesting work

Many folks take on Staff‐plus roles believing it will give them access
to the most visible or exciting work. That’s true to some extent, but it

26

https://www.levels.fyi/
https://www.levels.fyi/

depends on the Staff archetypeswhich aremost prevalent at your com‐
pany. For example, Solvers often do get access to the most interesting
work. Conversely, a Tech Lead would probably be undermining their
team if they operated that way.

Among the folks I’ve spoken with, the most consistently effective way
to get access to interestingwork is being hired to do it, such as RituVin‐
cent who was hired to launch Dropbox’s product incubator and Keavy
McMinn who was hired to design Fastly’s API strategy.

This doesn’t always work out. Sometimes the interesting work will be
plainly visible but still inaccessible. You’ll be too obligated to the busi‐
ness’ needs to pursue aproject out of personal interest. In earlier roles,
you might be able to sneak that sort of project into your backlog, but
now you’ll have a responsibility tomodel good behavior. Even in cases
where the project is the best thing for the company, you’ll often de‐
cide to pass the opportunity on to another engineerwhowould benefit
from it more than you would.

Different rather than better

Even though the title does matter, it’s not necessarily the case that you
ought to pursue the role. Even if you love the privileges and perks of a
Staff‐plus title, it’s important to recognize that they come on the back
of a very different job. Michelle Bu captured this in her advice for folks
pursuing the Staff title,

If you’re more focused on hitting Staff than on setting yourself
up to do work that energizes you, it’s easy to end up stuck in
a role you don’t want. Being a Staff‐plus Engineer, especially
a broad‐scoped Staff‐plus Engineer, is a very different job than
being a Senior Engineer. It’s important to take a step back and
think about whether it’s a job you really want.

The advantages of senior titles are real, and for some folks, those ad‐

27

vantages shift their career from one characterized by survival to one
with the necessary prerequisites for their success. However, many
folks find that their Staff role’s heightened expectations eliminate the
work that used to excite them. In your career, there are few choices
without consequences, and this isn’t one of them.

Material but not magic

You’ll occasionally meet an engineer who believes that attaining a cer‐
tain title is the only thing standing between them and an important ac‐
complishment or opportunity. Such folks might express frustrations,
such as, “If I just had the Staff title, I could decide the technology stack
for our team.”

Increased organizational authority does provide new tools for solving
problems, but successfully retaining organizational authority in awell‐
managed organization requires a great deal of nuance and restraint. If
you have a problem and believe that your title is the only thing hold‐
ing you back, I want to reassure you that focusing on developing your
approach and skills will be far more impactful than the title. The title
will get you over the ledge once you’re close, but it’ll never do as much
work as you’d expect.

The one consistent exception to this rule is that women andminorities
often do find they spend significantly less time and energy, proving
themselves once they attain a Staff‐plus title. The title doesn’t unlock
new abilities for them, but it does remove some of the weight they’d
been carrying with them throughout their career.

28

Operating at Staff

One of the best pieces of advice that someone gave me, and that
I make sure to pass on to other staff engineers, is that there’s a
misconception that you become a Staff Engineer and then you’ll
be in control of the work you do, and everyone will listen to
you and do what you want them to do. That’s absolutely the
opposite of what happens! ‐ Katie Sylor‐Miller

Many engineers become focused on the Staff‐plus career path because
the engineering manager path has too many meetings or requires too
much collaboration with other coworkers, and yikes, are you going
to be surprised if you begin a Staff‐plus with that mindset. Although
Staff Engineer roles are generally positioned as the sequential step be‐
yond Senior Engineer, it’s genuinely a different role, and you’ll increas‐
ingly spend your time doing sorts of work that you previously did in‐
frequently or not‐at‐all.

There is a significant learning curve in Staff‐plus roles that initially trip
most folks up. Part of the challenge is thatmuch of the work you’re do‐
ing has a much slower feedback cycle. The delayed feedback can ini‐
tially feel quite demoralizing as you replace the visceral coding REPL
with the uneven progress of mentorship, relationship building, and
strategy.

This chapter is about overcoming that learning curve, learning to op‐
erate as a Staff Engineer, and finding the parts of the role which are
personally fulfilling and organizationally transformative.

Topics

In the interviews for this book, as well as my own experience leading
and coaching Staff‐plus engineers, a handful of topics kept coming up
as keystones of personal development. They aren’t everything you’ll do
in the role, but they are the places where you’re most likely to have an

29

https://en.wikipedia.org/wiki/Read–eval–print_loop

outsized impact or accidentally commit a career‐limiting move.

1. Work on what matters to make the most of the working hours
you have, particularly as you get further along in your career and
life’s commitments expand.

2. Write an engineering strategy to guide your organization’s ap‐
proach to supporting your company’s business objectives with
its architecture, technology selection, and organizational struc‐
ture.

3. Curate technical quality to maintain the quality of your com‐
pany’s architecture and software as it grows and tacks over time.

4. Stay aligned with authority to remain an effective leader over
time. Technical leadership roles rely on proxied authority from
another (usually, managerial) leader, and continued access to
that authority depends on staying aligned, trustworthy, and pre‐
dictable.

5. To lead, you have to follow. Having a vivid sense of how things
ought to work is a powerful leadership tool, but it’s also essential
to learn to blend your vision with the visions from your peers
and leadership.

6. Learn to never be wrong shift away from being right and
towards understanding and communication. Stop spending
your social capital repairing relationships frayed by conflict,
and learn to collaborate with folks with different priorities and
perspectives. This also comes with the added benefit of fewer
folks complaining about you to your manager.

7. Create space for others so that your team grows stronger than
your contribution.

8. Build a network of peers to vet difficult decisions and to give
you honest feedback when your role’s authority starts to temper
feedback.

An astute reader will notice two critical themes discussed in What do

30

Staff engineers actually do? are missing from this topic list: the first
is “mentorship and sponsorship,” and the second is “being glue.” Both
concepts are essential to the success of Staff‐plus engineers, but ulti‐
mately, I think the canonical pieces on these topics already exist, and
you’re better served by reading those thanmywatery rehash. Formen‐
torship and sponsorship, spend some time with Lara Hogan’s What
Does Sponsorship Look Like?, and for being glue, spend time with
Tanya Reilly’s piece that bore the phrase, Being Glue.

As you deliberately practice in each of these areas, you’ll slowly
progress from a newly minted Staff Engineer to a trusted organiza‐
tional leader. That said, these won’t cover everything you do. At times
you’ll find your role surprisingly similar to that of an Engineering
Director, and at other times strangely familiar to previous work in
your career.

That vast remit is part of what makes describing these roles challeng‐
ing. If there’s a particular topic you’re focused on that’smissing, check
out the Additional resources for learning appendix.

31

https://larahogan.me/blog/what-sponsorship-looks-like/
https://larahogan.me/blog/what-sponsorship-looks-like/
https://noidea.dog/glue

Work onwhatmatters

I’ve taken to using the word “energized” over “impactful.”
“Impactful” feels company‐centric, and while that’s important,
“energized” is more inwards‐looking. Finding energizing work
is what has kept me at Stripe for so long, pursuing impactful
work. ‐ Michelle Bu

We all have a finite amount of time to live, and within that mortal
countdown, we devote some fraction towards our work. Even for the
most career‐focused, your life will be filled with many things beyond
work: supporting your family, children, exercise, being a mentor and
a mentee, hobbies, and so the list goes on. This is the sign of a rich
life, but one side‐effect is that time to do your work will become in‐
creasingly scarce as you get deeper into your career.

If you’re continuing to advance in your career, then even as your time
available for work shrinks, the expectations around your impact will
keep growing. You can try sleeping less or depriving yourself of the
non‐work activities you need to feel whole, but you’ll inevitably find
that your workmaintains an aloof indifference to your sacrifice rather
than rewarding it. Only through pacing your career to your life can
you sustain yourself for the long‐term.

Indeed, pacing yourself becomes the central challenge of a sustained,
successful career: increasingly senior roles require that you accom‐
plishmore andmore and do it in less and less time. The ledge between
these two constraints gets narrower the further you go, but it remains
walkable if you take a deliberate approach.

First, a discussion on a few common ways to get tripped up: snacking,
preening, and chasing ghosts. Then we’ll get into the good stuff: how do
you work on what really matters?

32

https://lethain.com/forty-year-career/

Avoid snacking

Hunter Walk recommends that folks avoid “snacking” when they
prioritize work. If you’re in a well‐run organization, at some point,
you’re going to run out of things that are both high‐impact and easy.
This leaves you with a choice between shifting right to hard and
high‐impact or shifting down to easy and low‐impact. The latter
choice–easy and low‐impact–is what Walk refers to as snacking.

When you’re busy, these snacks give a sense of accomplishment that
makes them psychologically rewarding. Still, you’re unlikely to learn
much from doing them, others are likely equally capable of complet‐
ing them (and for someof them, itmight be a gooddevelopment oppor‐
tunity), and there’s a tremendous opportunity cost versus doing some‐
thing higher impact.

It’s ok to spend someof your time on snacks to keep yourselfmotivated
between bigger accomplishments, but you have to keep yourself hon‐
est about howmuch time you’re spending on high‐impact work versus
low‐impact work. In senior roles, you’re more likely to self‐determine
your work, and if you’re not deliberately tracking your work, it’s easy
to catch yourself doing little to no high‐impact work.

Stop preening

Where “snacking” is the broad category of doing easy and low‐impact
work, there’s a particularly seductive subset of snacking that I call
“preening.” Preening is doing low‐impact, high‐visibility work. Many
companies conflate high‐visibility and high‐impact so strongly that
they can’t distinguish between preening and impact, which is why it’s
not uncommon to see some companies’ senior‐most engineers spend
the majority of their time doing work that’s of dubious value, but that
is frequently recognized in company meetings.

If you’re taking a short‐term look at career growth, then optimizing

33

https://hunterwalk.com/2016/06/18/the-best-startups-resists-snacks-im-not-talking-about-food/
https://yenkel.dev/posts/how-to-achieve-career-growth-opportunities-skills-sponsors

for your current organization’s pathologies in evaluating impact is the
optimal path: go forth and preen gloriously. However, if you’re think‐
ing about developing yourself to succeed as your current role grows in
complexity or across multiple organizations, then it’s far more impor‐
tant to strike a balance between valued work and self‐growth.

This is also an important factor to consider when choosing a company
to work at! Dig into what a company values and ensure it aligns with
your intended personal growth. If a company’s leadership consists
entirely of folks who focus their energy on performative urgency or
acts of fealty, don’t be surprised when your success in the company
depends on those activities.

Worse, to be a successful preener requires near invulnerability to crit‐
icism of your actual impact, and your true work will suffer if your en‐
ergy is diverted to preening. Typically thismeans you need to be a van‐
ity hire of a senior leader or to present yourself in the way a company
believes leaders look and act. If that isn’t you, then your attempt to ex‐
change your good judgment for company success will end up failing
anyway: you’ll get held accountable for the lack of true impact where
others who match the company’s expectation of how a leader appears
will somehow slip upward.

Stop chasing ghosts

Many folks would assume that companies, rational optimizers that
they are, avoid spending much time on low‐impact high‐effort
projects. Unfortunately, that isn’t consistently the case. It’s sur‐
prisingly common for a new senior leader to join a company and
immediately drive a strategy shift that fundamentallymisunderstands
the challenges at hand. The ghosts of their previous situation hold
such a firm grasp on their understanding of the new company that
they misjudge the familiar as the essential.

34

https://lethain.com/growing-with-your-company/
https://lethain.com/growing-with-your-company/
https://lethain.com/grand-migration/
https://lethain.com/grand-migration/

As a senior leader, you have tomaintain a hold on your ego to avoid in‐
vesting inmeaninglesswork on a grand scale. This can be surprisingly
challenging when during your hiring process, you’ve been repeatedly
told that you’ve been hired to fix something deeply broken–you’re the
newly‐hired savior. Of course, your instincts are right! Taking the time
to understand the status quo before shifting it will always repay dili‐
gence with results.

I had a recent discussion with someone who argued that new senior
leaders deliberately push for major changes even though they suspect
the efforts will fail. Such changes make the organization increasingly
dependent on the new leader and also ensures anything that does go
well gets attributed to thenew leader directly rather than their team. If
this is your approach to leadership, please know that you’re awful and
take the time towork on yourself until thewell‐being and success of an
entire company matter to you more than being perceived as essential.

Existential issues

Now that you’re done snacking, preening, and chasing ghosts, it’s time
to to start thinking from the other direction: what should youwork on?
The first place to look for work that matters is exploring whether your
company is experiencing an existential risk. Companies operate in
an eternal iterative elimination tournament, balancing future success
against survivinguntil that future becomes thepresent. If you’re about
to lose one of those rounds, then always focus there.

Running out of money, like my experience at Digg, can be the most
obvious issue, but not every existential issue is financial, like Twitter’s
fail whale stability challenges or adapting to the shifts caused by the
Covid‐19 pandemic.

If something dire is happening at your company, then that’s the place
to be engaged. Nothing else will matter if it doesn’t get addressed.

35

https://lethain.com/iterative-elimination-tournaments/
https://lethain.com/digg-v4/
https://www.theatlantic.com/technology/archive/2015/01/the-story-behind-twitters-fail-whale/384313/
https://www.theatlantic.com/technology/archive/2015/01/the-story-behind-twitters-fail-whale/384313/

Work where there’s room and attention

Existential issues are usually not the most efficient place to add your
efforts, but efficiency isn’t a priority when thewalls are crashing down
around you. You should swarm to existential problems, but if a prob‐
lem isn’t existential, then you should be skeptical of adding your ef‐
forts where everyone’s already focused. Folks often chase leadership’s
top priority, but with somany folks looking tomake their impact there,
it’s often challenging to have a meaningful impact.

Instead, themost effective places to work are those thatmatter to your
company but still have enough room to actually dowork. What are pri‐
orities that will become critical in the future, where you can do great
work ahead of time? Where are areas that are doing ok but could be
doing great with your support?

Sometimes you’ll find work that’s worthy of attention but which an or‐
ganization is incapable of paying attention to, usually because its lead‐
ership doesn’t value that work. In some companies, this is developer
tooling work. In others, it’s inclusion work. In most companies, it’s
glue work.

There is almost always a great deal of room to do this sort of work that
no one is paying attention to, so you’ll be able to make rapid initial
progress on it, which feels like a good opportunity to invest. At some
point, though, you’ll find that the work needs support, and it’s quite
challenging to get support for work that a company is built to ignore
or devalue. Your early wins will slowly get eroded by indifference and
misalignment, and your initial impact will be reclaimed by the sands
of time.

Does thismean you shouldn’t do inclusionwork? No, that’s not the con‐
clusion I want you to take away from this. Sometimes an area that an
organization doesn’t pay attention to is so important that you’re going
towant to advocate for it to start paying attention. Teaching a company

36

https://noidea.dog/glue

to value something it doesn’t care about is the hardest sort of work you
can do, and it often fails, so you should do as little of it as you can, but
no less. As a senior leader, you have an ethical obligation that goes be‐
yond maximizing your company‐perceived impact, but it’s important
to recognize what you’re up against and time your efforts accordingly.

Foster growth

One area that’s often underinvested in (e.g., lots of room to work in)
while also being highly leveraged is growing the team around you. Hir‐
ing has a lot of folks involved in it, usually in terms of optimizing the
hiring funnel, but onboarding, mentoring, and coaching are wholly
neglected at many companies despite being at least as impactful as
hiring to your company’s engineering velocity.

If you start dedicating even a couple of hours a week to developing the
team around you, it’s quite likely that will become your legacy long
after your tech specs and pull requests are forgotten.

Edit

A surprising number of projects are one small change away from suc‐
ceeding, one quick modification away from unlocking a new oppor‐
tunity, or one conversation away from consensus. I think of making
those small changes, quick modifications, and short conversations as
editing your team’s approach.

With your organizational privilege, relationships you’ve built across
the company, and ability to see around corners derived from your ex‐
perience, you can often shift a project’s outcomes by investing the
smallest ounce of effort, and this is some of the most valuable work
you can do.

It’s particularly valuable because it’s quick, it’s easy, it’s highly moti‐
vating for both you and the person you help, and it’s hugely impactful

37

https://lethain.com/hiring-funnel/
https://lethain.com/productivity-in-the-age-of-hypergrowth/
https://lethain.com/productivity-in-the-age-of-hypergrowth/

when done well. (Also, it’s highly demotivating when done poorly, so
your approach matters!)

Finish things

One special sort of editing is helping finish a project that just can’t
quite close itself out. Often you’ll have a talented engineer earlier in
their career who is already doing the work but can’t quite create buy‐
in or figure out how to rescope their project into finishable work. It’s
surprisingly common that coaching a teammate on how to tweak a
project into something finishable and then lending them your privi‐
lege to budge the right friction points will transform a six‐month slog
into a two‐week sprint with almost an identical impact.

We only get value from finishing projects, and getting a project over
the finish line is the magical moment it goes from risk to leverage.
Time spent getting work finished is always time well spent.

What only you can

The final category of work that matters is the sort that you’re uniquely
capable of accomplishing. Sure there’s work that you’re faster at or
better at than some other folks, but much more important is the sort
of work that simply won’t happen if you don’t do it.

This work is an intersection of what you’re exceptionally good at and
what you genuinely care about. It might be writing your company’s
technology strategy that folks will actually follow, it might be convinc‐
ing a great candidate to join, it might be changing your CEO’s mind on
how you pay down tech debt, it might be crafting a discerning API.

Whatever it is, things that simply won’t happen if you don’t do them
are your biggest opportunity to work on something that matters, and
it’s a category that will get both narrower and deeper the further you
get into your career.

38

https://www.amazon.com/dp/B078Y98RG8/
https://lethain.com/magnitudes-of-exploration/
https://lethain.com/magnitudes-of-exploration/
https://increment.com/apis/api-design-for-eager-discering-developers/

Why it matters

Suppose you’re interviewing for a new role twenty years into your ca‐
reer. Will the folks interviewing you understand your real impact on
any of your previous projects or companies? No, I guarantee they
won’t. Instead, you’ll find yourself judged by a series of surprisingly
subjective measures: your accumulated prestige, the titles you’ve had
and companies you’ve worked at, your backchannel reputation, and
how you present in your interview process.

You can’t escape subjective interview practices, but you can deliber‐
ately accumulate expertise from doing valuable work. Indeed, that’s
the only viable long‐term bet on your career: focus on work that mat‐
ters, do projects that develop you, and steer towards companies that
value genuine experience.

39

Writing engineering strategy

I kind of think writing about engineering strategy is hard
because good strategy is pretty boring, and it’s kind of boring
to write about. Also I think when people hear “strategy” they
think “innovation” ‐ Camille Fournier

Few companies understand their engineering strategy and vision.
One consequence of this uncertainty is the industry belief that these
documents are difficult to write. In some conversations, it can
feel like you’re talking about something mystical, but these are just
mundane documents. The reality is that good engineering strategy is
boring and that it’s easier to write an effective strategy than a bad one.

To write an engineering strategy, write five design documents, and
pull the similarities out. That’s your engineering strategy. To write
an engineering vision, write five engineering strategies, and forecast
their implications two years into the future. That’s your engineering
vision.

If you can’t resist the urge to include your most brilliant ideas in the
process, then you can include them in your prework. Write all of your
best ideas in a giant document, delete it, and never mention any of
them again. Now that those ideas are out of your head, your head is
cleared for the work ahead.

Durably useful engineering strategy and vision are the output of iter‐
ative, bottom‐up organizational learning. As such, all learning con‐
tributes to your organization’s strategy and vision, but your contribu‐
tion doesn’t have to be so abstract. Even if you’re not directly responsi‐
ble for that work, there are practical steps that you can take to advance
your organization’s strategy and vision, starting right now.

40

https://twitter.com/skamille/status/1328763503973429250

When andwhy

Before diving into the recipe for creating effective strategies and
visions, a good starting question is, “When and why should I actually
create them?” Strategies are tools of proactive alignment that em‐
power teams to move quickly and with confidence. Strategies allow
everyone–not just the empowered few–to make quick, confident
decisions that might have otherwise cost them a week of discussion.
Strategies are also the bricks that narrow your many possible futures
down enough that it’s possible to write a realistic vision. If you realize
that you’ve rehashed the same discussion three or four times, it’s time
to write a strategy. When the future’s too hazy to identify investments
worth making, it’s time to write another vision. If neither of those
sound like familiar problems – move on to other work for now and
return later.

Write five design docs

Design documents describe the decisions and tradeoffs you’ve made
in specific projects. Your company might call them RFCs or tech
specs. Stranger names happen, too; Uber bewilderingly called them
DUCKS until they later standardized on RFC. A good design document
describes a specific problem, surveys possible solutions, and explains
the selected approach’s details. There are many formats to pick
from; a few places to start your thinking are Design Docs, Markdown,
and Git, Design Docs at Google, and Technical Decision‐Making and
Alignment in a Remote Culture.

Whether a given project requires a design document comes down to
personal judgment, but I’ve found a few rules useful. You shouldwrite
design documents for any project whose capabilities will be used by
numerous future projects. You should also write design documents
for projects that meaningfully impact your users. You should write a
design document for any work taking more than a month of engineer‐

41

https://blog.pragmaticengineer.com/scaling-engineering-teams-via-writing-things-down-rfcs/
https://caitiem.com/2020/03/29/design-docs-markdown-and-git/
https://caitiem.com/2020/03/29/design-docs-markdown-and-git/
https://www.industrialempathy.com/posts/design-docs-at-google/
https://multithreaded.stitchfix.com/blog/2020/12/07/remote-decision-making/
https://multithreaded.stitchfix.com/blog/2020/12/07/remote-decision-making/

ing time.

A batch of five design docs is the ideal ingredient for writing an effec‐
tive strategy because design documents have what bad strategies lack:
detailed specifics grounded in reality. It’s easy for two well‐meaning
engineers on the same team to interpret an abstract strategy in differ‐
ent ways, but it’s much harder to stay misaligned when you’re imple‐
menting a specific solution.

A few recommendations as you write:

• Start from theproblem. The clearer the problem statement, the
more obvious the solutions. If solutions aren’t obvious, spend
more time clarifying the problem. If you’re stuck articulating
the problem, show what you have to five people and ask them
what’s missing: fresh eyes always see the truth.

• Keep the template simple. Most companies have a design doc‐
ument template, which is a great pattern to follow. However,
those templates are often expanded to serve too many goals.
Overloaded templates discourage folks from writing design
documents in the first place. Prefer minimal design document
templates that allow authors to select the most useful sections
and only insist on exhaustive details for the riskiest projects.

• Gather and review together, write alone. It’s very unlikely that
you personally have all the relevant context to write the best de‐
sign document on a given topic. Before getting far into the pro‐
cess, collect input from folks with relevant perspectives, particu‐
larly those who will rely on the output of your design document.
However, be skeptical of carrying that collaborative process into
writing the design document itself. Most folks are better writers
than they are editors. This means it’s usually harder to edit a
group document into clear writing than to identify one author
to write a clear document. Gather perspectives widely but write
alone. Just be careful not to fall in love with what you’ve written

42

until after you’ve reviewed it with others.
• Prefer good over perfect. It’s better to write a good document
and get it in front of others than it is to delay for something
marginally better. This is particularly valuable to keep in mind
when giving feedback on other folks’ designs; it’s easy to fall
into the trap of expecting their designs to be just as good as your
best design. Particularly as you becomemore senior, it’s toxic to
push every design to meet the bar of your own best work. Focus
on pushing designs to be good, rather than fixating on your own
best as the relevant quality bar.

It takes a lot of practice to write great design documents. If you want
to improve yours, my best advice is to reread your designs after you’ve
finished implementing them and study the places where your imple‐
mentationdeviated fromyour plan–what caused those deviations? Oh,
and of course, just keep writing more of them.

Synthesize those five design docs into a strategy

After your organization has written five design documents, sit down
and read themall together. Look for controversial decisions that came
up inmultiple designs, particularly those thatwere hard to agree on. A
recent example ofmine was getting stuck debating whether Redis was
appropriate as durable storage or only as a cache. Rather than starting
from zero in each design document review, wouldn’t it be easier if we
reviewed our recent decisions about using Redis, reflected on how we
made those decisions and wrote them down as a strategy?

Good strategies guide tradeoffs and explain the rationale behind that
guidance. Bad strategies state a policy without explanation, which
decouples them from the context they were made. Without context,
your strategy rapidly becomes incomprehensible–why did they decide
this?–and difficult to adapt as the underlying context shifts. A few
interesting strategies to read while thinking about writing your own

43

are A Framework for Responsible Innovation and How Big Technical
Changes Happen at Slack.

If you’re a Good Strategy, Bad Strategy convert–and that book has
wholly transformed how I think about strategy–then you’ll note
this definition of strategy is the “diagnosis” and “guiding policies”
sections, deferring “coherent action” to the design documents.

My best advice for writing a strategy document is:

• Start where you are. Working on strategy, it’s easy to be para‐
lyzed by the inherently vast ambiguity we work in, but you’ve
just got to dive in and start writing. Waiting for missing infor‐
mation doesn’t work: every missing document is missing for a
good reason. Whatever you write will need to change, and if you
write something particularly bad, you’ll quickly realize the need
to change it. Where you are now is always the best place to start.

• Write the specifics. Write until you start to generalize, and then
stop writing. If you can’t be specific, wait until you’ve written
more design documents. Specific statements create alignment;
generic statements create the illusion of alignment.

• Be opinionated. Good strategies are opinionated. If they aren’t
opinionated, then they won’t provide any clarity on decision
making. However, being opinionated on its own isn’t enough.
You also need to show your work.

• Show your work. In math classes growing up, you had to show
your work to get full credit. Here too, you must show the ra‐
tionale behind your opinions. Showing your work builds con‐
fidence in the first version of a document, but even more impor‐
tantly, by showing your work, you make it possible for others to
modify and extend your work as the underlying context shifts.

Someof thebest strategies youwritemayat the time feel too obvious to
bother writing. “When should we write design documents?” is a strat‐

44

https://multithreaded.stitchfix.com/blog/2019/08/19/framework-for-responsible-innovation/
https://slack.engineering/how-big-technical-changes-happen-at-slack/
https://slack.engineering/how-big-technical-changes-happen-at-slack/
https://www.amazon.com/dp/B004J4WKEC

egy worth writing. “Which databases do we use for which use cases?”
is a strategy worth writing. “How should we stage our migration from
monolith to services?” is worth writing, too. As we leave behind the
idea of strategy as demonstrations of brilliance, we can start to write
far more of them, and we can write them more casually. If it ends up
not being used, you can always deprecate it later.

Extrapolate five strategies into a vision

As you collectmore strategies, it’ll become increasingly challenging to
reason about how the various strategies interact. Maybe one of your
strategies is to Run less software and relymore on cloud solutions, but
another one of your strategies is to prefer offloading complexity to the
database whenever possible. How do you reconcile those strategies if
you identify a database that would allow you to offload a great deal of
complexity, but that isn’t offered by your cloud vendor?

Take five of your recent strategies, extrapolate how their tradeoffs will
play out over the next two to three years. As you edit through the
contradictions and weave the threads together, you’ve written an engi‐
neering vision. The final version will give you what Tanya Reilly calls
a robust belief in the future, which makes it easier to understand how
your existing strategies relate to each other and simplifies writing new
strategies that stand the test of time.

For a useful vision, a few things to focus on are:

• Write two to three years out. Companies, organizations, and
technology all change quickly enough that thinking too far into
the future is fraught. It also doesn’t work if you write a vision
that expires in six months–how many strategies would you re‐
alistically write within that six‐month window? Try to focus on
two to three years out; you can expand that horizon a bit if you’re
a fairly established company.

45

https://www.intercom.com/blog/run-less-software/
https://twitter.com/whereistanya
https://leaddev.com/technical-direction-strategy/sending-gifts-future-you

• Ground in your business and your users. Effective visions
ground themselves in serving your users and your business.
That tight connection keeps the vision aligned with your lead‐
ership team’s core values–users and business. Bad visions treat
technical sophistication as a self‐justifying raison d’être–a view
that is never shared by your company’s leadership.

• Be optimistic rather than audacious. Visions should be ambi‐
tious, but they shouldn’t be audacious. They should be possible,
but the best possible version if possible. Dowritewhat you could
accomplish if every project is finished on time and without ma‐
jor setbacks. Don’t write what you think would be possible with
infinite resources.

• Stay concrete and specific. Visions get more useful as they get
more specific. Generic statements are easy to agree with but
don’t help reconcile conflicting strategies. Be a bitmore detailed
than you’re comfortable with. Details in visions are often illus‐
trative rather than declarative, giving a taste of the future’s flavor
rather than offering a binding commitment.

• Keep it one to two pages long. The reality is that most people
don’t read long documents. If you write something five or six
pages long, readers will start dropping off without finishing it
(or will skim it very rapidly without engaging with the details).
Force yourself to write something compact, and reference extra
context by linking to other documents for the subset of folkswho
want the full details.

After you finish writing your vision, the first step folks usually take
is sharing it widely across the engineering organization. There is so
much work behind the vision–five design docs for each strategy, five
strategies for one vision–it’s hard not to get excited when you’re done.
So excited that it’s easy to get discouraged, then, when the response to
your strategywill almost always bemuted. There are a few reasons for
the muted response. First, the core audience for your vision is folks

46

writing strategies, which is a relatively small cohort. Second, a great
vision is usually so obvious that it bores more than it excites.

Don’tmeasure vision by the initial excitement it creates. Instead,mea‐
sure it by reading a design document from two years ago and then one
from last week; if there’s marked improvement, then your vision is
good.

47

Managing technical quality

I feel particularly impactful when I can help improve a
proposal that’s well‐intentioned and solves a real need, but
the team that drafted it lacks either experience or context to
write a good plan to capture the opportunity. In such cases,
having a well‐structured plan can help substantially reduce the
scope while getting to most of the value, and thus demonstrate
impact sooner. ‐ Dmitry Petrashko

If there’s one thing that engineers, engineering managers, and tech‐
nology executives are likely to agree on, it’s that there’s a crisis of tech‐
nical quality. One diagnosis and cure is easy to identify: our engineers
aren’t prioritizing quality, and we need to hire better engineers or re‐
train the ones we have. Of course, you should feel free to replace “en‐
gineers” with “product managers” or “executives” if that feels more
comfortable. It’s a compelling narrative with a clear villain, and it con‐
veniently shifts blame away from engineering leadership. Still, like
most narratives that move accountability towards the folks with the
least power, it’s both unhelpful and wrong.

When you accept the premise that low technical quality results from
poor decision‐making, you start looking for bad judgment, and some‐
one at the company must be the culprit. Is it the previous CTO? Is it
that Staff Engineer looking at youwith a nervous smile? Is it everyone?
What if it’s none of those folks, and stranger yet isn’t even your fault
either?

In most cases, low technical quality isn’t a crisis; it’s the expected,
normal state. Engineers generally make reasonable quality decisions
when they make them, and successful companies raise their quality
bar over time as they scale, pivot, or shift up‐market towards enter‐
prise users. At a well‐run and successful company, most of your pre‐
vious technical decisions won’t meet your current quality threshold.

48

Rather than a failure, closing the gap between your current and target
technical quality is a routine, essential part of effective engineering
leadership.

The problem

As an engineering leadership team, your goal is to maintain an
appropriate technical quality level while devoting as much energy
as possible towards the core business. You must balance quality
across multiple timeframes, and those timeframes generally have
conflicting needs. For example, you’ll do very different work getting
that critical partnership out the door for next week’s deadline versus
building a platform that supports launching ten times faster next
quarter.

Just as your company’s technical quality bar will shift over time, your
approach to managing technical quality will evolve in tandem:

1. fix the hot spots that are causing immediate problems
2. adopt best practices that are known to improve quality
3. prioritize leverage points that preserve quality as your software

changes
4. align technical vectors in how your organization changes soft‐

ware
5. measure technical quality to guide deeper investment
6. spin up a technical quality team to create systems and tools for

quality
7. run a quality program tomeasure, track and create accountabil‐

ity

As we dig into this toolkit of approaches, remember to pick the cheap‐
est, most straightforward tool likely to work. Technical quality is a
long‐term game. There’s no such thing as winning, only learning and
earning the chance to keep playing.

49

Ascending the staircase There’s a particular joy in drilling into the
challenge at hand until you find a generalized problem worth solv‐
ing. However, an equally important instinct is solving the current
situation quickly and moving on to the next pressing issue.

As you think about the right quality improvements to make for your
team and organization, it’s generally most effective to start with the
lightest weight solutions and only progress towards massive solutions
as earlier efforts collapse under the pressure of scale. If you can’t get
teams to adopt proper code linting, your attempts to roll out a compre‐
hensive quality program are doomed. Although the latter can bemore
effective at scale, they’re much, much harder to execute.

So, do the quick stuff first!

Even if it doesn’t work, you’ll learnmore andmore quickly from failing
to roll out the easy stuff than failing to roll out the hard stuff. Then
you’ll get to an improved second iteration sooner. Over time you will
move towards comprehensive approaches, but there’s no need to rush.
Don’t abandon the ease, joy, and innocence of early organizations for
the perils of enterprise‐scale coordination without proper need.

It’s convenient to present these phases as a linear staircase to be
ascended, but that’s rarely how real organizations use them. You’re
more likely to fix a quality hot spot, roll out a best practice, start
running an architecture review, abolish that architecture review,
and go back to hot‐spotting for a bit. Premature processes add more
friction than value and are quick to expose themselves as ineffective.
If something isn’t working, try for a bit to make it work, and then
celebrate its demise.

Hot spots

When confronted by a quality problem, the first instinct is often to
identify a process failure that necessarily requires a process solution.

50

If a deployment causes an outage, it’s because the author didn’t cor‐
rectly follow the code test process, so now we’re going to require tests
with every commit – that’ll teach those lazy developers!

There’s the old joke about Sarbannes‐Oxley: it doesn’t reduce risk; it
justmakes it clearwho to blamewhen things gowrong. Unfortunately,
that joke applies without humor to how many organizations roll out
processes. Accountability has its role, but it’s much more important
to understand the problem at hand and try to fix it directly than to
create process‐driven accountability.

Process rollout requires humans to change how they work, which
you shouldn’t undertake lightly. Rather than reaching for process
improvement, start by donning the performance engineer’s mindset.
Measure the problem at hand, identify where the bulk of the issue
occurs, and focus on precisely that area.

The previous example of an untested deploymight benefit from giving
direct feedback to the deploying engineer about changing their testing
habits. Alternatively, maybe you’re better served by acknowledging
that your software design is error‐prone and adopting the “define er‐
rors out of existence” approach described in A Philosophy of Software
Design.

If you have a development velocity problem, it might be optimizing
test runtimes, moving your Docker compile step onto a RAM disk, or
using the techniques described in Software Design X‐Rays to find the
specific files to improve.

Systems thinking is the most transformative thinking technique I’ve
encountered in my career. Still, at times it can be a siren beckon‐
ing you towards fixing a current system you may be better discarding.
Sure, you can roll out a new training program to teach your team how
to write better tests, but alternatively, maybe you can just delete the
one test file where 98% of test failures happen. That’s the unreason‐

51

https://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
https://www.amazon.com/Philosophy-Software-Design-John-Ousterhout/dp/1732102201
https://www.amazon.com/Philosophy-Software-Design-John-Ousterhout/dp/1732102201
https://en.wikipedia.org/wiki/RAM_drive
https://www.amazon.com/Software-Design-X-Rays-Technical-Behavioral-ebook-dp-B07BVRLZ87/dp/B07BVRLZ87/
https://lethain.com/systems-thinking/

able effectiveness of prioritizing hot spots and why it should be the
first technique you use to improve technical quality.

At some point, you’re likely to find that your organization is creating
quality problems faster than you’re able to fix hot spots, and that’s
when it’s time to move on to adopting best practices.

Best practices

I once worked at a company that didn’t have a team planning process.
Over time theheadof engineeringwas increasingly frustratedwith the
inability to project target dates andmandated thatweuse Scrum. After
the mandate, a manager wrote the Scrum process on a wiki. There
was an announcement that we were using Scrum. Managers told their
teams to use Scrum. Mission accomplished!

Of course, no one started to use Scrum. Everyone kept doing what
they’d done before. It’s awkward to acknowledgemistakes, so the head
of engineering declared adoption a major win, and no one had the
heart to say differently.

This sad tale mirrors how many companies try to roll out best prac‐
tices, and it’s one of the reasons why best practices have such a bad
reputation. In theory, organizations would benefit from adopting best
practices before fixing quality hot spots, but I recommend practices
after hot spotting. Adopting best practices requires a level of organi‐
zational and leadership maturity that takes some time to develop.

When you’re rolling out a new practice, remember that a good pro‐
cess is evolved rather than mandated. Study how other companies
adopt similar practices, document your intended approach, experi‐
mentwith thepracticewith a fewengaged teams, sanddown the rough
edges, improve the documentation based on the challenges, and only
then roll it out further. A rushed process is a failed process.

Equally important is the idea of limiting concurrent process rollouts.

52

https://en.wikipedia.org/wiki/Scrum_(software_development)
https://lethain.com/good-process-is-evolved/
https://lethain.com/good-process-is-evolved/

If you try to get teams to adopt multiple new practices simultaneously,
you’re fighting for their attentionwith yourself. It alsomakes it harder
to attribute impact later if you’re considering reverting or modifying
one of the new practices. It’s a bit draconian, but I’ve come to believe
that you ought to limit yourself to a single best practice rollout at any
given time. Channel all your energy towards making one practice a
success rather than splitting resources across a handful.

Adopting a single new practice at a time also forces you to think care‐
fully about which to prioritize. Selecting your next process sounds
easy, but it’s often unclear which best practices are genuinely best
practice and which are just familiar or famous. Genuine best prac‐
tice has to be supported by research, and the best source of research
on this topic is Accelerate.

While all of Accelerate’s recommendations are data‐driven and quite
good, the handful that I’ve found most helpful to adopt early are ver‐
sion control, trunk‐baseddevelopment, CI/CD, andproductionobserv‐
ability (including developers on‐call for the systems they write), and
working in small, atomic changes. There are many other practices I’d
love to advocate for (who hasn’t spent a career era advocating for bet‐
ter internal documentation), but I don’t trust my intuition like I once
did.

The transition from fixing hot spots to adopting best practices comes
whenyou’re overwhelmedby toomanyhot spots to cool. Thenext tran‐
sition, from best practices to leverage points, comes when you find
yourself wanting to adopt a new best practice before your in‐progress
best practice is working. Rather than increasing your best practice
adoption‐in‐progress limit, move on to the next tool.

53

https://www.amazon.com/dp/B07B9F83WM/
https://increment.com/documentation/why-investing-in-internal-docs-is-worth-it/
https://increment.com/documentation/why-investing-in-internal-docs-is-worth-it/
https://lethain.com/limiting-wip/
https://lethain.com/limiting-wip/

Leverage points

In the Hotspotting section, we talked about using the performance en‐
gineer’s mindset to identify the right problems to fix. Optimization
works well for the issues you already have, but it’s intentionally inap‐
plicable to the future: the worst sin of performance engineering is ap‐
plying effort to unproven problems.

However, as you look at how software changes over time, there are a
small handful of places where extra investment preserves quality over
time, both by preventing gross quality failures and reducing the cost
of future quality investments.

I call those quality leverage points, and the three most impactful
points are interfaces, stateful systems, and data models.

Interfaces are contracts between systems. Effective interfaces decou‐
ple clients from the encapsulated implementation. Durable interfaces
expose all the underlying essential complexity and none of the under‐
lying accidental complexity. Delightful interfaces are Eagerly discern‐
ing, discerningly eager.

State is the hardest part of any system to change, and that resistance
to change makes stateful systems another critical leverage point. State
gets complex faster than other systems and has an inertia that makes
it relatively expensive to improve later. As you incorporate business
obligations around security, privacy, and compliance, changing your
stateful systems becomes even more challenging.

Data models are the intersection of the interfaces and state, constrain‐
ing your stateful system’s capabilities down to what your application
considers legal. A good datamodel is rigid: it only exposes what it gen‐
uinely supports and prevents invalid states’ expression. A good data
model is tolerant of evolution over time. Effective data models are not
even slightly clever.

54

https://increment.com/apis/api-design-for-eager-discering-developers/
https://increment.com/apis/api-design-for-eager-discering-developers/

As you identify these leverage points in your work, take the extra
time to approach them deliberately. If it’s an interface, integrate
half a dozen clients against the mocked implementation. If it’s a data
model, represent half a dozen real scenarios. If it’s stateful, exercise
the failure modes, check the consistency behaviors, and establish
performance benchmarks resembling your production scenario.

Take everything you’ve learned, and pull it into a technical specifica‐
tion document that you socialize across your team. Gather industry
feedback from peers. Even after you begin implementation, listen to
reality’s voice and remain open to changes.

One of the hidden powers of investing in leverage points is that you
don’t need total organizational alignment to do it. To write a technical
vision or roll out a best practice, you need that sort of buy‐in, which
is why I recommend starting with leverage points. However, if you’ve
exhausted the accessible impact from leverage points, it may be time
to move on to driving broader organizational alignment.

Technical vectors

Effective organizations marshal the majority of their efforts towards
a shared vision. If you plot every technical decision as a vector on
a grid, the more those vectors point in the same direction, the more
you’ll accomplish over time. Conversely, some of the most impressive
engineers I’veworkedwith created vectorswith an extraordinarymag‐
nitude but amisaligned direction. Ultimately those engineers harmed
their organizations in their attempts to lead it.

One sure‐fire solution to align technical direction is to route all related
decisions to the same person with Architect somewhere in their title.
This works well but is challenging to scale, and the quality of an ar‐
chitect’s decisions degrade the further they get from doing real work
on real code in the real process. On the other extreme, you can allow

55

every team to make independent decisions. But an organization that
allows any tool is an organizationwith uniformly unsupported tooling.

Your fundamental tools for aligning technical vectors are:

• Give direct feedback. When folks run into misalignment, the
first answer is often process change, but instead, start with
simply giving direct feedback to the individuals who you believe
are misaligned. As much as they’re missing your context, you’re
missing theirs, and a quick conversation can often prevent years
of unnecessary process.

• Refine your engineering strategy from tech spec, to strategy, to
vision.

• Encapsulate your approach in your workflows and tooling.
Documentation of a clear vision is helpful, but some folks
simply won’t study your document. Deliberate tools create
workflows that nurture habits far better than training and
documentation. For example, provisioning a new service might
require going to a website that requires you to add a link to a
technical spec for that service. Another approach might be
blocking deploys to production if the service doesn’t have an
on‐call setup established, with someone currently on‐call, and
that individual must also have their push notifications enabled.

• Train new teammembers during their onboarding. Changing
folks’ habits after they’ve formed is quite challenging, which is
frustrating if you’re attempting to get folks to adopt new prac‐
tices. However, if you get folks pointed in the right direction
when they join, then that habit‐momentum will work in favor
of remaining aligned.

• Use Conway’s Law. Conway’s Law argues that organizations
build software that reflects their structure. If your organiza‐
tion is poorly structured, this will lead to tightly coupled or
tangled software. However, it’s also a force for quality if your

56

https://en.wikipedia.org/wiki/Conway%27s_law

organization’s design is an effective one.
• Curate technology change using architecture reviews, invest‐
ment strategies, and a structured process for adopting new
tools. Most misalignment comes from missing context, and
these are the organizational leverage points to inject context
into decision‐making. Many organizations start here, but it’s
the last box of tools that I recommend opening. How can you
provide consistent architecture reviews without an articulated
vision? Why tell folks your strategy after they’ve designed
something rather than in their onboarding process?

Regardless of the approaches you use to align your technical vectors,
this is work that tends to happen over months and years. There’s no
world where you write the vision document, and the org immediately
aligns behind its brilliance. Much more likely is that it gathers dust
until you invest in building support.

Most companies can combine the above techniques from hot‐spot fix‐
ing to vector‐alignment into a successful approach for managing tech‐
nical quality, and hopefully, that’s the case for you. However, many
find that they’re not enough and that you move towards heavier ap‐
proaches. In that case, the first step is, as always, measurement.

Measure technical quality

The desire tomeasure in software engineering has generally outpaced
our state ofmeasurement. Accelerate identifiesmetrics tomeasure ve‐
locity, which are powerful for locating process and tooling problems,
but these metrics start after the code’s beenmerged. How do youmea‐
sure your codebase’s quality such that you can identify gaps, propose
a plan of action, and evaluate the impact of your efforts to improve?

There are some process measurements that correlate with effective
changes. For example, you could measure the number of files

57

https://lethain.com/scaling-consistency/
https://lethain.com/magnitudes-of-exploration/
https://lethain.com/magnitudes-of-exploration/
https://slack.engineering/how-big-technical-changes-happen-at-slack/
https://slack.engineering/how-big-technical-changes-happen-at-slack/
https://www.amazon.com/dp/B07B9F83WM/

changed in each pull request on the understanding that smaller pull
requests are generally higher quality. You could also measure a
codebase’s lines of code per file, on the assumption that very large
files are generally hard to extend. These could both be quite helpful,
and I’d even recommend measuring them, but I think they are at best
proxy measurements for code quality.

My experience is that it is possible to usefully measure code quality,
and it comes down to developing an extremely precise definition of
quality. The more detailed you can get your definition of quality,
the more useful it becomes to measure a codebase, and the more
instructive it becomes to folks hoping to improve the quality of the
area they’re working on. This approach is described in some detail
in Building Evolutionary Architectures and Reclaim unreasonable
software.

Some representative components to consider including in your quality
definition:

• What percentage of the code is statically typed?
• Howmany files have associated tests?
• What is test coverage within your codebase?
• How narrow are the public interfaces across modules?
• What percentage of files use the preferred HTTP library?
• Do endpoints respond to requestswithin 500msafter a cold start?
• Howmany functions have dangerous read‐after‐write behavior?
Or perform unnecessary reads against the primary database in‐
stance?

• Howmany endpoints perform all state mutation within a single
transaction?

• Howmany functions acquire low‐granularity locks?
• Howmany hot files exist which are changed inmore than half of
pull requests?

58

https://www.amazon.com/Building-Evolutionary-Architectures-Support-Constant/dp/1491986360/
https://lethain.com/reclaim-unreasonable-software/
https://lethain.com/reclaim-unreasonable-software/

You’re welcome to disagree that some of these properties ought to ex‐
ist in your codebase’s definition of quality: your definition should be
specific to your codebase and your needs. The important thing is de‐
veloping a precise,measurable definition. Therewill be disagreement
in the development of that definition, and you will necessarily change
the definition over time.

After you’ve developed the definition, this is an area where instrumen‐
tation can be genuinely challenging, and instrumentation is a require‐
ment for useful metrics. Instrumentation complexity is the biggest
friction point for adopting these techniques in practice, but if you can
push through, you unlock something pretty phenomenal: a real, dy‐
namic quality score that you can track over time and use to create a
clarity of alignment in your approach that conceptual alignment can‐
not.

With quality defined and instrumented, your next step is deciding be‐
tween investing in a quality team or a quality program. A dedicated
team is easy to coordinate and predictable in its bandwidth and is gen‐
erally the easier place to start.

Technical quality team

A technical quality team is a software engineering team dedicated to
creating quality in your codebase. You might call this team Developer
Productivity, Developer Tools, or Product Infrastructure. In any case,
the team’s goal is to create and preserve quality across your company’s
software.

This is not what’s sometimes called a quality assurance team. Al‐
though both teams make investments into tests, the technical quality
team has a broader remit from workflow to build to test to interface
design.

When you’re bootstrapping such a team, start with a fixed team size of

59

three to six folks. Having a small team forces you to relentlessly priori‐
tize their roadmap on impact and ensures you’ll maintain focus on the
achievable. Over time this team will accumulate systems to maintain
that require scaling investment, Jenkins clusters are a common exam‐
ple of this, and you’ll want to size the team as a function of the broader
engineering organization. Rules of thumb are tricky here, but maybe
one engineer working on developer tooling for every fifteen product
engineers, in addition to your infrastructure engineering investment.

It’s rare for these teams to have a product manager, generally one‐or‐
more Staff‐plus engineers, and the engineering manager partner to
fill that role. Sometimes they employ a Technical Program Manager,
but typically that is after they cross into operating a Quality program as
described in the next section.

When spinning up and operating one of these teams, some fundamen‐
tals of success are:

1. Trustmetrics over intuition. You should have a way tomeasure
every project. Quality is a complex system, the sort of place
where your intuition can easily deceive you. Similarly, as you
become more senior at your company, your experience will no
longer reflect most other folks’ experiences. You already know
about the rough edges, and you’ll be the first person in line to
get help if you find a new one, but most other folks don’t. Met‐
rics keep you honest.

2. Keep your intuition fresh. Code and process change over time,
and your intuition is going stale every week you’re away from
building product features. Most folks find that team embedding
and team rotations are the best way to keep your instincts rel‐
evant. Others monitor chat for problems, as well as a healthy
schedule of 1:1 discussions with product developers. The best
folks do both of those and keep their metrics dashboards handy.

3. Listen to and learn from your users. There is a popular idea of

60

https://lethain.com/sizing-engineering-teams/

“taste level,” which implies that some folks simply know what
good looks like. There is a huge variance in folks who design
effective quality investments, but it isn’t an innate skill. The best
folks focus on deeply understanding what their users are trying
to accomplish and prioritize user needs over implementation
constraints.

Adoption and usability of your tools are much more important than
raw power. A powerful tool that’s difficult to use will get a few power
users, but most folks will pass it by. Slow down to get these details
right. Hide all the accidental complexity. Watch an engineer try to use
your tool for their first timewithout helping themwith it. Improve the
gaps. Do that tenmore times! If you’re not doing user research on your
tools, then you are doomed as a quality investment team. 4. Do fewer
things, but do them better. When you’re building for the entire en‐
gineering organization, anything you do well will accelerate the over‐
all organization. Anything you do poorly, including something almost
great with too many rough edges, will drag everyone down. Although
it’s almost always true that doing the few most important things will
contribute more than many mediocre projects, this is even more true
in cases where you’re trying to roll out tools and workflows to your
entire organization (the organizational process‐in‐progress limits still
apply here!). 5. ** Don’t hoard impact.** There’s a fundamental ten‐
sion between centralized quality teams and the teams that they sup‐
port. It’s often the case that there’s a globally optimal approach pre‐
ferred by the centralized team, which grates heavily on a subset of
teams that work on atypical domains or workloads. One representa‐
tive example is a company writing its backend servers in JavaScript
and not allowing their machine learning engineers to use the Python
ecosystem because they don’t want to support two ecosystems. An‐
other case is a company standardized on using REST/HTTP2/JSON for
all APIs where a particular team wants to use gRPC instead. There’s
no perfect answer here, but it’s important to establish a thoughtful ap‐

61

https://en.wikipedia.org/wiki/No_Silver_Bullet

proach that balances the benefits of exploration against the benefits
of standardization.

A successful technical quality teamusing the above approacheswill be
unquestionablymore productive than if the same number of engineers
were directly doing product engineeringwork. Indeed, discounted de‐
veloper productivity (in the spirit of discounted cash flow) is the theo‐
retically correct way to measure such a team’s impact. Only theoreti‐
cally, because such calculations are mostly an evaluation of your self‐
confidence.

Even if you’re quite successful, you’ll always have a backlog of high‐
impact work that you want to take on but don’t have the bandwidth to
complete. Organizations don’t make purely rational team resourcing
decisions, and you may find that you lack the bandwidth to complete
important projects and likewise can’t get approval to hire additional
folks onto your team.

It’s a good sign when your team has more available high‐impact work
than you can take on: if you aren’t selective about which projects to
take on, then you’re not thinking broadly enough. This means you
shouldn’t necessarily try to grow your technical quality team if you
have a backlog. However, if you find that there is critical quality work
that you can’t get to, then it may be time to explore starting a quality
program.

Quality program

A quality program isn’t computer code at all, but rather an initiative
led by a dedicated team to maintain technical quality across an orga‐
nization. A quality program takes on the broad remit of achieving the
organization’s target level of software quality. These are relatively un‐
common, but something similar you’ve probably encountered is an
incident program responsible for a company’s incident retrospectives

62

http://lethain.com/magnitudes-of-exploration/
http://lethain.com/magnitudes-of-exploration/
https://en.wikipedia.org/wiki/Discounted_cash_flow

and remediations.

The technical components of running a quality program are the sorts
of things discussed above, so here we’ll focus onmanaging a program
effectively. Your first step is to find a technical programmanager who
can co‐lead the program and operate its mechanics. While you can
make considerable progress on an organizational program’s informa‐
tional aspects without a technical program manager; however, it’s a
trap. You’ll be crushed by the coordination overhead of solo‐driving a
program in a large organization.

Operating organizational programs is a broad topic aboutwhichmuch
has been written, but the core approach is:

1. Identify a program sponsor. You can’t change an organization’s
behavior without an empowered sponsor. Organizations behave
the way they do because it’s the optimal solution to their current
constraints, and you can’t shift those constraints without the ad‐
vocacy of someone powerful.

2. Generate sustainable, reproducible metrics. It’s common for
folks running a program to spend four‐plus hours a week main‐
taining their dataset by hand. This doesn’t work. Your data will
have holes in it, you won’t be able to integrate your data with
automation in later steps, and you’ll run out of energy to do the
work to effect real change; refreshing a metrics dashboard has
no inherent value.

3. Identify program goals for every impacted team and a clear
path for them to accomplish those goals. Your program has to
identify specific goals for each impacted team. For example, re‐
ducing test flakiness in their tests or closing incident remedia‐
tions more quickly. However, it’s essential that you provide the
map to success! So many programs demand participation from
other teams without providing clear directions on how they can

63

https://lethain.com/programs-owning-the-unownable/
https://lethain.com/programs-owning-the-unownable/

accomplish their part. The program owner is the subject mat‐
ter expert, don’t offload your strategy to every team to indepen‐
dently reinvent.

4. Build the tools and documentation to support teams towards
their goals. Once you’ve identified a clear path for teams to ac‐
complish your program goals, figure out how you can help them
make those changes! Thismight be providing “golden examples”
of what things ought to look like, or an example pull request
refactoring a challenging section of code into the new pattern.
It might be providing a test script to verify themigration worked
correctly. It might be auto‐generating the conversion commit to
test, verify, and merge without having engineers write it them‐
selves. Do as much as you possibly can to avoid every team hav‐
ing to deeply understand the problem space you’re attempting to
make progress in.

5. Create a goal dashboard and share it widely. Once you have
your program goals communicated to each team, provide
dashboards that help them understand their current state, their
goal state, and that give reinforcing feedback on their (hopeful)
progress along the way. The best dashboard is going to be both
a scorecard for each team’s work and also provide breadcrumbs
for each team on where to focus their next efforts.

There are three distinct zoom‐levels that your dashboard should
support. The fully zoomed‐out level helps you evaluate your pro‐
gram’s impact. The fully zoomed‐in level helps an individual
team understand their remaining work. A third level between
the two helps organizational leaders hold their teams account‐
able (and supports your program sponsor in making concrete,
specific asks to hold those leaders accountable).

6. Send programmatic nudges for folks behind on their goals.

64

Folks are busy. They won’t always prioritize your program’s
goals. Alternatively, they might do an amazing job of making
your requested improvements but backtrack later with depre‐
cated practices. Use nudges to direct the attention of teams
towards the next work they should take towards your program’s
goals. Remember, attention is a scarce resource! If you waste
folks’ time with a nudge email or ping, they won’t pay attention
to the next one.

7. Periodically review program status with your sponsor. Pro‐
grams are trying to make progress on an organizational priority
that doesn’t naturally align with the teams’ goals. Many teams
struggle to break from their local prioritization to accomplish
global priorities. This is where it’s essential to review your over‐
all progresswith your sponsor andpoint them towards the teams
that prioritize program work. Effectively leveraging your spon‐
sor to bridge misaligned prioritization will be essential to your
success.

In a lot of ways, a program is just an endless migration, and the tech‐
niques that apply to migrations work for programs as well.

If you get all of those steps right, you’re running a genuinely great pro‐
gram. This might feel like a lot of work, and wow, it is: a lot of pro‐
grams go wrong. The three leading causes of failed programs are:

1. running it purely from a process perspective and becoming de‐
tached from the reality of what you’re trying to accomplish,

2. running it purely from a technical perspective and thinking that
you can skip the essential steps of advocating for your goal and
listening to the folks you’re trying to motivate,

3. trying to cover both perspectives as a single person–don’t go it
alone!

A bad program is a lot like an inefficient non‐profit: the goal is right,

65

http://lethain.com/migrations/
http://lethain.com/migrations/

but few funds reach the intended goal. No matter how you decide to
measure technical quality, themost important thing to always remem‐
ber when running your quality program is that the program isn’t the
goal. The goal is to create technical quality. Organizational programs
are massive and build so much momentum that inertia propels them
forward long after they’ve stopped working. Keep your program lean
enough to cancel, and remain self‐critical enough to cancel if it ceases
driving quality creation.

Start small and add slowly

When you realize your actual technical quality has fallen considerably
behind your target technical quality, the natural first reaction is to
panic and start rolling out a vast array of techniques and solutions.
Dumping all your ingredients into the pot, inevitably, doesn’t work
well, and worse, you don’t even know which parts to keep.

If you find yourself struggling with technical quality–and we all do,
frequently–then start with something small, and iterate on it until it
works. Then add another technique, and iterate on that too. Slowly
build towards something that genuinely works, even if itmeansweath‐
ering accusations of not moving fast enough. When it comes to com‐
plex systems and interdependencies, moving quickly is just optics. It’s
methodical movement that gets the job done.

66

Stay aligned with authority

In my role, we’ll often go weeks without being in the same room
together, but I still have to operate as if I’m his direct proxy. So
I go into a room and think, “What would Matthew do here?
What is the question he would want to ask? What guidance has
he given on this problem?” Because I can’t always run back to
him for clarification, it’s essential to develop and maintain a
deep understanding of his world view. That’s essential for me
to retain the very deep trust required to be his representative and
effectively carry out his strategy and vision. People need to be
confident that I’ll always give the same answer that Matthew
would give if he were there. ‐Rick Boone

It’s a common misconception that authority makes you powerful.
Many folks aspiring towards more senior roles assume they’ll finally
get to do things their way. They believe that the title inherently cre‐
ates flexibility and autonomy. They believe that the friction holding
them back will burst into a whirl of butterflies that scatter into the
wind.

The reality is a bit more nuanced.

Titles comewith the sort of power called organizational authority, and
that variety of authority is loaned to you by a greater organizational
authority. What’s bestowed can also be retracted, and retaining or‐
ganizational authority depends on remaining deeply aligned with the
bestowing sponsor, generally your direct manager. To remain effec‐
tive within a staff‐plus role, you have to learn the art of staying aligned
with organizational authority.

Beyond the safety net

Retire your remaining expectations that the company is designed to
set you up for success. Now you are one of the people responsible for

67

setting the company, your team, and your manager up for success.

Most mature technology companies succeed in creating a predictable
promotion pipeline from folks joining early in their careers up
through attaining the Senior Engineer title. The process of getting
a Staff title is generally more complex than preceding titles but
usually navigated with the support of your engineering manager.
Throughout this pipeline, you may become comfortable with your
manager guiding your development and providing a safety net for
your continued success. After reaching a Staff role, your safety net
will cease to exist, or at best, the safety net will be short enough that
you’re quite capable of jumping past it and into the awaiting chasm.
This will be increasingly true as you go further into Senior Staff and
Distinguished Engineer roles.

Staff‐plus roles are leadership roles, and in leadership roles, the sup‐
port system that got you here will fade away. Often abruptly, you’re
now expected to align the pieces around you for your own success.

Serving at the pleasure of the President

When Rick Boone described his role as Strategic Advisor to the Vice‐
President of Infrastructure at Uber, he compared his role to Hand of
the King inGame of Thrones, and LeoMcGarry from TheWestWingwho
frequently remarked, “I serve at the pleasure of the President.” In both
those examples, authority flows from the tight associationwith greater
authority, and it’s a great mental model for operating in a Staff‐plus
role. This can be a difficult transition from previous roles where your
authority primarily accumulated through your personal actions and
impact over time.

If you and your manager have worked together for years, then you’ve
already performed a subtle, subterranean sort of alignment over that
time. In other cases, a new executivewill joinwho is familiar with sup‐

68

https://awoiaf.westeros.org/index.php/Hand_of_the_King
https://awoiaf.westeros.org/index.php/Hand_of_the_King
https://westwing.fandom.com/wiki/Leo_McGarry

porting these roles and will bring a deliberate map to how they want
to work together. However, both of those circumstances are largely
out of your control, so it’s valuable to develop your own approach to
aligning upward with your manager.

To align with your manager, some areas to focus on are:

• Never surprise your manager. Nothing destroys trust faster
than surprising your manager. Steering a large organization
often involves juggling several projects and problems in your
head at once, and surprises threaten the juggler’s rhythm. Large
or frequent surprises also call into question whether a leader
is truly taking responsibility for their organization. In general,
treat each time you surprise your manager as an incident to be
learned from and endeavor to prevent repeats.

• Don’t let your sponsor surprise you. Most folks have extremely
high expectations of their managers, assuming, for example,
that they will always remember to relay information relevant
to your current work. Managers try to do this, some of them
are excellent at it, and others are not particularly good. If
your manager isn’t great at this, you should certainly give them
feedback, but you should also take proactive action to facilitate
information flow. This might be weekly email updates or a Slack
thread within your team’s channel sharing your focuses for the
week. During 1:1s, dig for the feedback! Ask if there are other
areas you should be focused on and how your current priorities
align with your manager’s. If you continue to surprise each
other, then identify the controls you’ll use to partner together.

• Feed your manager’s context. If the first step is avoiding sur‐
prising your manager with your own actions, the next step is to
help yourmanager not get surprised by thewide organization. If
teams are frustrated by a new policy or your internal tools aren’t
scaling with needs, proactively feed that to your manager. Be

69

https://lethain.com/weekly-updates/
https://lethain.com/identify-your-controls/

clear that you’re not bringing them a problem to solve, rather
conveying information you believe will be useful. Opinions are
helpful, but even more helpful is data when you can find it.

Sometimes you’ll hear someone disparage a colleague, saying that
they’re excellent at “managing up.” There are certainly destructive
ways to manage up where someone controls information to hide
problems or misrepresent circumstances, but at its core, managing
up is about increasing bandwidth and reducing friction between you
and your manager. Cultivating a deliberate partnership with your
manager will go far further than practicing disappointment when
they don’t meet your expectations.

Influencing without toomuch friction

Part of growing as a leader in developing your ownperspective on how
the world should work, and you can’t reach the Staff‐plus level without
that perspective. Having a clear sense of how things ought to work
sharpens your judgment and enables you to act proactively. As you
reach this next step of leadership, you increasingly have tomerge your
vision with those held by more senior organizational leaders.

Your first approach to solving this problem might be replacing your
vision with another leader’s vision, and that approach works for some,
but for many, it means stepping away from the perspective that facili‐
tated their success as aproactive leaderwith strong judgment. Instead,
I recommend sharpening your awareness of the value distinctions be‐
tween those that you hold and those that the organization operates
under and find a way to advocate for them without getting kicked out
of the room.

People can only change so quickly, and organizations aremade of peo‐
ple. If you’re deliberate in your approach, you’ll be able to influence
your organization’s leaders immensely over time, but you’ll only get

70

https://lethain.com/getting-in-the-room/
https://lethain.com/getting-in-the-room/

that time if you learn to remain in tight alignment at each step along
the way.

71

To lead, you have to follow

It’s about taking that global thinking and applying it
locally. That means aligning your team’s (technical) initia‐
tives/roadmaps to the Engineering–wide technical strategy;
and being intentional about when you veer off of that path to
serve the needs of your team’s immediate stakeholders. That
means collaborating with your team’s managers in adopting
successful practices in hiring, onboarding, and production
operations from other teams; and sharing practices from your
team that would be beneficial for others. That means taking
context from company‐wide business/product strategy and
translating that to how it impacts your team’s immediate
projects ‐ Ras Kasa Williams

Years ago, the company I was working with hired a newDirector of En‐
gineering, and the CTO was talking about why the new Director was
an amazing hire. The new Director’s clinching accomplishment? The
best ever explanation of the distinction between leadership and man‐
agement. This turned out not to be a particularly effective way to eval‐
uate hires, but it is an interesting topic.

Defining leadership and management is such heavily trodden terrain
that it’s hard to add much to it, but roughly management is a specific
profession, and leadership is an approachone candemonstratewithin
any profession.

The way I think about leadership has evolved a bit over the last few
years, though, coming to focus on two specific attributes. First, lead‐
ers have a sufficiently refined view of how things ought to work that
they can rely on their distinction betweenhow things are andhow they
ought to be to identify proactive, congruent actions to narrow that gap.
Second, they care enough about the gap to actually attempt those nar‐
rowing actions.

72

If you only see the gap without acting on it, you might be a visionary,
but you’re inert. If you take action without a clear view of the goal,
many will consider you a leader, but your impact will be random, ar‐
bitrary, and inefficient. Combining both with some luck is likely to
take you a long way in your career, and these are characteristics com‐
mon in folks I’ve workedwith who successfully navigate the transition
into staff engineering or senior management roles.

But this sort of leadership can only take you so far, and personally, it
took me years of blundering to understand why my approach to lead‐
ership created so much early success for me when first joining a com‐
pany but slowly eroded how my contribution was received over time.
The lesson that I slowly learned was that you couldn’t be an effective
long‐term leader until you learn how to follow.

I think this is the most important lesson I’ve learned over the past few
years: the most effective leaders spendmore time following than they
do leading. This idea also comes up in the idea of the “the first follower
creates a leader,” but effective leaders don’t split theworld into a leader
and follower dichotomy, rather theymove in and out of leadership and
follower roles with the folks around them.

There are many ways to put this approach into practice.

1. Be clear with yourself what your true priorities are, and don’t
dilute yourself across everything that comes up. If there’s some‐
thing you disagree with but only in a minor way, let others take
the lead figuring it out. A helpful question here is, “Will what we
do here matter to me in six months?” If it won’t, take the oppor‐
tunity to follow.

2. Give your support quickly to other leaders who are working to
make improvements. Even if you disagree with their initial ap‐
proach, someone trustworthy leading a project will almost al‐
ways get to a good outcome. If someone trustworthy is leading

73

http://staffeng.com/
https://www.cornerstoneondemand.com/rework/ted-talk-tuesday-how-start-movement
https://www.cornerstoneondemand.com/rework/ted-talk-tuesday-how-start-movement

a project, and you’re still uncomfortable letting them move for‐
ward, consider why you lack confidence in your ability to influ‐
ence them and if you’re bad at giving feedback.

3. Make your feedback explicitly non‐blocking. This can be clas‐
sifying a code review comment as an “optional nit,” but it can
also be writing up detailed feedback but delivering it to some‐
onementioning that youwanted to share your perspective rather
than necessarily change their approach.

If this is something you’ve struggled with, I’m sympathetic. I’ve strug‐
gled with it too. When you have a strong enough worldview to lead,
you’ll start to collect others around you who rely on you maintaining
that world’s physics, and tolerating any deviation from your vision can
feel like you’re letting them down. But this is the epitome of some‐
thing that’ll get you to one level of success but block the next: contin‐
ued growth requires learning to incorporate your worldview into the
worldviews of those around you, accelerating overall progress around
you even if it means tolerating a detour from your vision.

What you can accomplish alone is far from what you can accomplish
by creating leaders. To be a great leader, take your time learning to
follow.

74

Learn to never be wrong

I present what I think is the best case for us, and people can
disagree with that. And, you know, they often do. I’m steering
and influencing more than saying, “I’ve got the authority to
just tell you what to do.” I’ve never seen that style work well. ‐
Keavy McMinn

Most folks haveworkedwith someonewho thinks they’re neverwrong.
In each discussion, they lean in, broaden their shoulders and breach
their way into the role of the decider. They’ll continue debating until
their perspective wins the day or time runs out. They are often right,
but right in a way that sucks the oxygen out of the room. As their
tenure at a company increases, they may fancy that they’ve become
very persuasive, but frequently it’s a form of persuasion characterized
by the resignation of their peers.

A few of the technical leaders that I’ve worked with have found a way
to never be wrong without dominating the room. To be right while
creating space for others. Someone who has always embodied this
approach for me is Franklin Hu, who I’ve seen reliably disarm con‐
tentious discussionswith his commitment to finding the best outcome
for everyone, willingness to leave his starting position and the default
assumption that there’s always an additional piece of context that rec‐
onciles seemingly conflicting perspectives into a unified view.

To become a senior technical leader, you must build a deep perspec‐
tive on technology and architecture. To operate as such a leader, you
must then develop an equally deep pragmatism and agnosticism to
technical religion to remain skeptical of yourself. This can feel like
a paradox, but it’s the line you’ll need to walk every day.

75

https://twitter.com/thisisfranklin

Listen, clarify and read the room

A lot of times, you’ll see engineers go into a discussion confident that
their perspective is right and with the goal of getting other folks in the
room to agreewith their approach. Thismentality turns eachmeeting
into a zero‐sum debate. Even in the “best case” that their approach is
agreed upon, they didn’t get to learn from anyone else in the room,
and it’s unlikely that the rest of the room is leaving energized.

The most effective engineers go into each meeting with the goal
of agreeing on the problem at hand, understanding the needs and
perspectives within the room, and identifying what needs to happen
to align on an approach. They approach each meeting as one round
within the broader context of the project and their relationships with
the folks in the room. If the room is ready to agree and move forward
on a solution, they land the team on that approach. If the room isn’t
ready, they don’t force it to happen.

To get good at this, you need to master three approaches: listen
through questions, define the purpose, and know how to read the
room.

Listening throughquestions is a form of active listeningwith the goal
of understanding the rest of the room’s perspectives. The act of ask‐
ing good questions with good intent opens up a conversation, creating
space and safety for others to ask their own questions. Good questions
are asked with the desire to learn, and they are specific. They sharpen
the conversation. They free the answerer from the obligation to de‐
fend their position. In a potentially contentious meeting, ask three
good questions before you share your perspective, and you’ll see the
room shift around you.

Goodmeetings start from a clear purpose and agenda, butmanymeet‐
ings don’t meet that definition of a good meeting, particularly ad‐hoc
discussions. If you ever find yourself in a conversation with an un‐

76

clear goal, then define the purpose. Take a moment to ask if your
understanding of what the group hopes to accomplish is correct. This
works best as a statement wrapped in a clarifying question along the
lines of, “Just to check, our goal here is to decide whether to postpone
launching the project by two weeks?”

Note that defining the purpose can be disruptive if it’s used too fre‐
quently. Rather than helping to clarify the conversation, in that case,
it creates conversational churn. For themost part, try to avoid using it
if someone else has already made an attempt. Meetings with multiple
failed reframings almost always end with scheduling another meet‐
ing.

Finally, in eachmeeting, you have to read the room. Oftentimes folks
get frustrated with a conversation and try to force agreement, which
creates so much pressure on the discussion that it’s unlikely to con‐
clude well. If the folks in the room are too far apart, then identify
a subgroup who are able to spend more time digging into it together
or identify an appropriate party to escalate to outside of the room. If
there’s simply toomuch stuff in the drawer, stop trying to shove it shut.

How to practice

If these behaviors don’t come naturally to you, that’s okay; the oppor‐
tunity to practice is all around. Every comment on a document is an
opportunity. Every meeting is an opportunity. Every pull request is
an opportunity.

Start each week by picking one of these skills you want to explicitly
use in the meetings you head into. If you have a particularly difficult
meeting come up, spend some time practicing in your head or with
a peer on how you might use these approaches to facilitate forward
progress despite the challenges.

77

Jerks

The above approach works well most of the time, but not always, and
oneof thenotable exceptions iswhenyou’re dealingwith a jerk. In this
case, a jerk is someone who withholds their consent from the group,
isn’t willing to compromise, or doesn’t listen. This is someone who
hasn’t learned that their career dependsmore on being easy to involve
than being technically correct.

The two most effective ways to deal with jerks are:

1. including someone they can’t be a jerk to in the meeting (like
their manager or the CTO)

2. investing heavily into aligning with them before the meeting, so
they feel heard and are less likely to derail the discussion

Both of these can feel ridiculous to spend your time on, but they’re
what tends to work best, especially if it’s a jerk you interact with in‐
frequently. If it’s someone in an area that you’re responsible for or
someone you work with frequently, then you have a somewhat differ‐
ent set of obligations. In that case, give them the feedback as kindly as
you canwhile still beinghonest. Give it a second time. Document both,
and if you don’t see an improvement, then communicate the concerns
to their manager, including the specific documentation, in a face to
face or video discussion.

It’s also useful to recognize that the authority created by your title shel‐
ters you from many of these folks, so whoever you’re experiencing is
being less of a jerk to you than they are to others. If the behavior feels
borderline for you, it’s potentially more egregious for others.

How it helps

This approach is powerful becausemore complexprojects get derailed
by personal conflict than by technical complexity, and this is a repeat‐
able way to replace tension with partnership. It feels like it’s slow be‐

78

cause it can take longer to get started, but ultimately it’s fast because
you’re more likely to complete the work without disruption.

In addition, longevity as a senior leader is just as much about main‐
taining your relationships as it is about standout successes. You’ll see
a bunch of folks who burn bright for a while but later lack the support
tomake forward progress. If youwant to avoid that fate, learn to never
be wrong and never stop practicing.

79

Create space for others

At this point, I spend less time advocating for specific technolo‐
gies or programs andmore time empowering others to advocate
for the technologies and programs that they think are impor‐
tant. I also try to be a source of knowledge and support that
people can reach out to for feedback, especially on cross‐cutting
product decisions and on presentation of ideas to the rest of the
organization. ‐ Michelle Bu

One of the best measures of your long‐term success as a Staff‐plus en‐
gineer is that the organization around you increasingly benefits from,
but doesn’t rely upon, your contributions. Because many folks reach
their first Staff‐plus role by being the “go‐to” person for the organiza‐
tion, it can be a difficult transition from essential to adjacent.

This transition requires learning to deliberately create space for the
team around you and comes down to actively involving them in discus‐
sions, decisions, and ultimately substituting sponsorship for repeat‐
ing the successes that got you to Staff in the first place.

Discussions

When you’re focused onmaximizing your personal impact, a good dis‐
cussion is one that ends quickly with a reasonable answer, alignment
among the participants, and positive feelings among the participants.
When you start thinking about creating space, the definition of a good
meeting expands quite a bit!

In this broader definition, a good meeting depends on getting more
folks involved and getting to a good set of decisions without much of
your own personal contribution. A goodmeeting is, in this newworld,
one that it turns out you didn’t need to attend. When you make a key
contribution, feel good about it, and then think about what needs to
happen for someone else to make that contribution next time.

80

Along with the shift in mindset, there are a few techniques that I’ve
found helpful in creating more space in discussions:

• Shift your contribution towards asking questions. Asking the
right questions helps avoidmissteps, but alsomakes it easier for
more folks to contribute

• If you see someone in the meeting who isn’t participating, pull
them into the discussion. It works best to pull exactly one person
at a time into the discussion. It gets confusing when you open it
upbroadly to everyone or even just try to pull twoor three people
at once

• Be the one to take notes. This helps destigmatize note‐taking as
“low status” and also frees up an alternative would‐be notetaker
to contribute more instead. It also gives you something to focus
on other than speaking!

• If you realize someone’smissing from the discussionwho should
be there, be the person to pull them into the next occurrence of
themeeting. Talkwith themeeting coordinator to let themknow
why it’s valuable to include them

As you follow thesemore andmore faithfully, your experience inmeet‐
ings will shrink, and your impact on the organization will grow.

Decisions

For so much of your career, success is making the right decision, and
it takes a while to realize that at a certain point making the decisions
isn’t the work. Ritu Vincent described that transition well,

It was also on that project where my manager helped me under‐
stand that my first impulse as a tech lead didn’t scale. Initially,
I was thinking, “I’ll break it into twenty pieces, assign out eigh‐
teen pieces, and keep the two hardest for myself,” and my man‐
ager pushedme to delegate the hard pieces to the team to stretch

81

https://lethain.com/learn-to-never-be-wrong/

and develop them.

On the other hand, it’s hard to transfer your judgment to someone else,
particularly around complex decisions. Fortunately, it’s possible to
take an incremental approach to shift increasingly complex and im‐
portant decisions to your wider team.

• Write it down. There’s a well‐worn model of genius encapsu‐
lated in the Feynman algorithm: “1) Write down a problem. 2)
Think very hard. 3)Write down the solution.” Thismystical view
of genius is both unapproachable and discouraging. It’s also un‐
realistic, but it’s hard for folks to know it’s unrealistic if we don’t
write down our thinking process for others to follow. By writing
down the process of finding an answer, as well as the rationale
for the answer, folks around us can begin to learn from our deci‐
sions rather than simply being directed by them

• Circulate early, and do it before you’ve crystallized on a decision.
Most folks struggle to walk back from a formed opinion, and by
gathering feedback early, it’s much easier to incorporate feed‐
back and involve folks in the decision‐making process so they
can see the trajectory of your thinking in addition to the final
output

• Separate style from substance, and stop giving style feedback
on other folks’ decisions. If a piece of feedback won’t meaning‐
fully change a project’s success, then consider not giving it. If
it’s useful but not critical, potentially make a private suggestion
rather than pulling a meeting into your orbit

• Don’t try to show value. Some senior folks feel like they need to
weigh in on everything to justify their seniority. Others require
each decision to exactly mirror a similar decision they once
made. Both of these center insecurity over impact and prevent
others from growing as leaders

• Change your mind. One of the biggest signs of respect for your

82

https://lethain.com/showing-value/

coworkers is listening to them and then changing your mind af‐
terward. If senior leaders don’t change their mind, then soon
everyone will correlate bluster with success

Involving folks in decisions you make and sharing your decision‐
making approach is a valuable component of growing the team
around you, but what about making the decisions theirs?

Sponsorship

By including folks in your discussions and decisions, you involve them
in yourwork. This is a greatway to grow, involve, and learn from those
around you, but at some point, you have to take the next step.

Instead of involving them in your work, make the work theirs.

This final step is sponsoring others for the kind of work that got you
to a Staff‐plus role. When critical work comes to you, your first ques‐
tion should become, “Who could be both successful with and grown
by this work?” See if you can get them to lead the work, and then work
with them to scaffold the project for their success. What would your
approach be? What are some initial concerns theymightwant to think
through? Who are the stakeholders they should discuss the problem
with early?

When you identify new critical work, perhaps identifying a gap in your
tooling or process, think about who else could be generating that work
and then sit down with them to have them put together the proposal
you planned towrite. Then build support for their proposal just as you
would have for your own.

Importantly, when thework becomes theirs, you have to let it be theirs.
Council, give advice, provide context, but ultimately sponsorship in‐
cludes letting them take an approach that you wouldn’t. It might end
up going poorly, and they’ll learn from that – just like you’ve learned

83

https://larahogan.me/blog/what-sponsorship-looks-like/

from your mistakes over your career. It might end up going very well,
and then you’ll learn something instead.

While sponsorship should become your default approach to problems,
it shouldn’t be your only tool. Most Staff‐plus engineers find it’s impor‐
tant to remain directly involved in some projects to retain their con‐
text of how their software, tooling, and organization work in practice.
If you need a rule of thumb, keep a sponsorship journal and ensure
you’re sponsoring others at least a few times amonth – if you find your‐
self sponsoring less frequently than that, dig into what’s stopping you.

Conversely, if you look back and can’t think of anything you’ve worked
on directly in the past few months, that’s worth course‐correcting too.

What if you don’t?

If you’ve cemented the final cobblestones to a Staff‐plus role by becom‐
ing the “go‐to person” for a key company leader, then you’ve learned
that solving an urgent problem for an organizational leader is one of
the surest paths to recognition. If you’ve become the technical vision‐
ary whose ideas saturate the company’s architecture roadmap, then
you’ve learned how powerful it feels to operate the gate to your com‐
pany’s technical future.

It’s hard to give those up.

However, the best case for this model is a company that thrives tem‐
porarily until that individual leaves. The farmore commonworst case
is a company constrained by your personal limitations, and the only
company that can tolerate being constrained by you is a company that
doesn’t grow.

The only way to remain a long‐term leader of a genuinely successful
company is to continually create space for others to take the recogni‐
tion, reward, andwork that got you towhere you’re currently sitting. It

84

https://www.amazon.com/dp/B0058DRUV6/
https://www.amazon.com/dp/B0058DRUV6/

can be surprisingly uncomfortable, but don’t worry: there will always
be new work for you anyway.

85

Build a network of peers

As I talk to more and more Staff‐plus engineers about career advice,
the most consistent recommendation was to develop a personal net‐
work of peers doing similar work. Not every person emphasized this
approach, but more than half mentioned it, and for those who did, it
tended to be their first and strongest recommendation.

Ritu Vincent said,

What’s beenmost impactful for me is having a lot of people who
I think of as mentors, usually friends, former managers, and
folks that I’ve workedwith. I have a decent number of recurring
monthly lunches, coffee chats, and dinners with people who’ve
workedwithme in the past, knowme, and I trust. It’s those con‐
versations about career challenges and growth that have gotten
me to where I am in my career.

KeavyMcMinnmentionedhernetwork as an importantway to get hon‐
est feedback,

The thing that springs to mind is to find your peers or support
network. Just like management, it gets lonely the higher up you
go, and it’s important to find peers that will still challenge you,
and you can brainstorm ideas with. It doesn’t even matter if
they’re in your similar area of work or even are in different com‐
panies.

Nelson Elhage similarly shared,

It’s also been really valuable for me to cultivate a good personal
network of other senior engineers. I chat with them informally
about whatever it is that we’re working on and thinking about.
When you have personal connections, you can get very unvar‐
nished views of the problems people are seeing and the solutions
they’re considering.

86

While it’s helpful to know you should build a network, some folks strug‐
gle to figure out how to do it. Among the various tactics to build your
network, the two most common strategies are: being easy to find and
networking internally.

Be visible

There is somuchpent‐up demand for community among Staff‐plus en‐
gineers that the easiest way to build your network is being easy to find
as a Staff‐plus engineer. One effective approach is contributing to the
discussion around Staff‐plus engineering itself, like Joy Ebert’zWhat a
Senior Staff Software EngineerActuallyDoes orKeavyMcMinn’s Thriv‐
ing on the Technical Leadership Path. Although there are a good num‐
ber of folks who’ve written up their view on the Staff‐plus role, each
one brings a new, valuable perspective. There’s room for your words
on the topic.

If writing isn’t your jam, there’s room for your voice, and speaking
at tech conferences is another effective way to become visible in the
broader community. KeavyMcMinn described hermotivation for con‐
ference speaking as,

Mostly, I enjoyed the people I met at conferences. Later the
speaker networks led to job opportunities for me.

If those both feel high‐stakes, even starting a Twitter account or join‐
ing a couple of related Slacks (for example, #staff‐principal‐engineering
in the Rands Leadership Slack) can be a good start.

Internal networks, too

Rather than focusing on public speaking and writing, Katie Sylor‐
Miller ’s networking advice was to build your internal network within
your current company,

87

https://lethain.com/meeting-people/
https://lethain.com/meeting-people/
https://keavy.com/work/thriving-on-the-technical-leadership-path/
https://keavy.com/work/thriving-on-the-technical-leadership-path/
https://randsinrepose.com/welcome-to-rands-leadership-slack/

Networking, networking, networking, networking… You have
to be really cognizant of who you’re talking to and make sure
that you have connections across multiple teams and multiple
groups to leverage those networks.

Although it’s easy to think of networking as something that only hap‐
pens externally, it’s often easier to do at the company you’re already in,
happening semi‐organically and semi‐deliberately over the course of
your work. This approach has the added advantage of directly improv‐
ing your day‐to‐daywork as well. Longer‐term, those folks will eventu‐
ally leave and spread across the industry, bootstrapping your broader
network. This works reallywell when you’re at a decently large or pres‐
tigious company and is a bit less effective as your current company
gets smaller or less prestigious.

Ambient networks

Among the folks who didn’t mention developing a personal network,
most mentioned creating an ambient network of learning based on
keeping current with industry books and following industry leaders
on social networks, particularly Twitter.

Diana Pojar’s comment was

I use Twitter extensively, but I’mmostly a consumer and follow
many people in tech. I usually follow people that I saw talking
at conferences, or I worked with, and I find their content
relevant to me. Here’s a couple, in no specific order: Camille
Fournier,Lara Hogan, Josh Wills, Vicki Boykis, David Gasca,
Julia Grace, Holden Karau, John Allspaw, Charity Majors,
Theo Schlossnagle, Jessica Joy Kerr, Sarah Catanzaro, Orange
Book.

Damian Schenkelman mentioned,

I try to follow people on Twitter who I think are doing interest‐

88

https://twitter.com/skamille
https://twitter.com/skamille
https://twitter.com/lara_hogan
https://twitter.com/josh_wills
https://twitter.com/vboykis
https://twitter.com/gasca
https://twitter.com/jewelia
https://twitter.com/holdenkarau
https://twitter.com/allspaw
https://twitter.com/mipsytipsy
https://twitter.com/postwait
https://twitter.com/jessitron
https://twitter.com/sarahcat21
https://twitter.com/orangebook_
https://twitter.com/orangebook_

ing things and from who I can learn. There are so many peo‐
ple doing interesting things and so much to learn! Some of the
names that come to mind: [including Aphyr, Tanya Reilly, and
David Fowler].

If the idea of building a network this way feels uncomfortable, then
building an ambient network can be a good starting step in the right
direction. That said, you’ll find the personal network more impactful,
and finding an authenticway to build one is an important step towards
reaching and remaining impactful in senior roles over the long arch
of your career.

Quality over quantity

A coworker once told me the story of someone determined to make
their name in Business Development, who would fly from SF to NYC
with a list of people they wanted to meet. They’d look for tweets and
Foursquare check‐ins for where those people might be that night, go
there, buy a drink, and pretend to serendipitously meet them. On a
good night, they’d try to meet six or more new connections this way.

It goes without saying that you shouldn’t do that – it’s a total violation
of boundaries. Further, doing this doesn’t even make sense: when it
comes to building a network of peers, the volume doesn’t matter. In‐
stead, focus on slowly building with folks you genuinely trust, respect,
and are inspired by. That’s what’ll create a truly powerful network to
help you solve the hardest problems and trickiest situations that come
your way.

Finally, if you’ve reached this paragraph and really want to build a net‐
work but just aren’t sure how to get started, I’ll share what’s worked
for me as an introvert who struggled to craft an authentic approach.
Find someone you respect and send them a short 1‐2 paragraph email
or DM with a specific question asking for advice. If they reply, thank

89

https://twitter.com/aphyr
https://twitter.com/whereistanya
https://twitter.com/davidfowl

them and send another question in six to twelve months. If they sub‐
sequently ask you for a favor or question, do what you can to help. If
they don’t reply, don’t worry about it; just move on without comment.
This works surprisingly well, and the worst thing that can happen is
totally fine: they’ll just never reply.

90

Present to executives

Have you presented to company executives about a key engineering
initiative, walking into the room excited and leaving defeated? Maybe
you only made it to your second slide before unrelated questions de‐
railed the discussion. Maybe you worked through your entire presen‐
tation only to have folks say, “Great job,” and leave without any useful
debate. Afterward, you’re not quite surewhat happened, but you know
it didn’t go well.

Early in your career, you probably won’t interact with company exec‐
utives frequently. Sure, if it’s a small enough company, you might, but
it isn’t the norm. As you get further into your career, though, increas‐
ingly, your impact will be constrained by your ability to influence ex‐
ecutives effectively. While staying aligned with authority is a prereq‐
uisite to influencing executives, there are also some new communica‐
tion skills for you to develop.

Why this is hard

Everyone has worked with a terrible executive at some point in their
career, but most executives aren’t awful. Almost all executives are out‐
standing at something; it’s just that often that something isn’t the topic
you’re communicating about with them. When you combine that lack
of familiarity with your domainwith limited time for the topic at hand,
communication is a challenge.

Those are garden‐variety communication challenges, though, and
communicating with executives can be unexpectedly difficult for
a less apparent reason: the executive has become accustomed to
consuming reality preprocessed in a particular way.

Any given executive is almost always uncannily good at one way of
consuming information. They feel most comfortable consuming data
in that particular way, and the communication systems surrounding

91

themare optimized to communicatewith them in that oneway. I think
of this as preprocessing reality, and preprocessing information the
wrong way for a given executive will frequently create miscommuni‐
cation that neither participant can quite explain.

For example, some executives have an extraordinary talent for pattern
matching. Their first instinct in any presentation is to ask a series of
detailed, seemingly random questions until they can pattern match
against their previous experience. If you try to give a structured, aca‐
demic presentation to that executive, they will be bored, and you will
waste most of your time presenting information they won’t consume.
Other executives will disregard anything you say that you don’t con‐
nect to a specific piece of data or dataset. You’ll be presenting with
confidence, knowing that your data is in the appendix, and they’ll be
increasingly discrediting your proposal as unsupported.

In most other scenarios, miscommunication creates latency rather
than errors. Still, when you’re communicating with executives, you’ll
often not get a second chance to discuss a given topic before the rele‐
vant decision is made. Invest ahead of the discussion to avoid lamen‐
tations afterward.

How to communicate effectively

The foundation of communicating effectively with executives is to get
a clear understanding of why you’re communicating with them in the
first place. You might be used to communicating with folks to change
their mind or inform them about your project, but that’s probably not
the case here. When you’re communicating with an executive, it’s al‐
most always one of three things: planning, reporting on status, or re‐
solving misalignment.

Although these are distinct activities, your goal is always to extract
as much perspective from the executive as possible. If you go into

92

the meeting to change their mind, you’ll probably come across as in‐
flexible. Go into the meeting to understand how you can align with
their priorities. You’ll comeacross as strategic andprobably leavewith
enough information to adapt your existing plan to work within the ex‐
ecutive’s newly articulated focuses or constraints.

The best way to extract their perspective is bywriting a structured doc‐
ument. Writing forces you to think comprehensively about your be‐
liefs and data. The structure ensures you focus the reader on what’s
important. Barbara Minto, whose The Pyramid Principle is the most
influential work on effective business communication, is also a big fan
of structure:

Controlling the sequence in which you present your ideas is the
single most important act necessary to clear writing. The clear‐
est sequence is always to give the summarizing idea before you
give the individual ideas being summarized. I cannot empha‐
size this point too much.

There are many structures that can work, but I’d particularly recom‐
mend every document’s opening paragraph follow the SCQA format:

• Situation: what is the relevant context? Example: We’ve been
falling behind our competition in shipping product features
for two years. Last year, we doubled our engineering team but
shipped fewer features than the year before.

• Complication: why is the current situation problematic? Exam‐
ple: We plan to double our engineering team again this year, but
based on last year’s experience, we think that will decrease ve‐
locity further while significantly increasing our organizational
budget.

• Question: what is the core question to address? Example: Should
we keep moving forward with our plan to double engineering
this year?

93

https://www.amazon.com/Pyramid-Principle-Logic-Writing-Thinking/dp/0273710516/

• Answer: what is your best answer to the posed question? Exam‐
ple: We should stop hiring for the next six months and focus on
gelling our existing team. Based on progress at that point, we
should refresh our hiring plan for the remainder of the year.

In many discussions, a well‐structured opening paragraph is enough
to spark an important conversation. Although in those cases, you
might not discuss the rest of your document, the process of writing
the document is still an important step in refining your thinking.

Relatively few folks employ a formal structure for the entirety of their
document, but there is at least one popular format that some folks find
valuable: Minto’s Pyramid Principle from the aforementioned book.
Start by brainstorming your proposal into a series of arguments that
support your answer. Once you’ve written them all down, group them
into related arguments. Shape those groups into three top‐level ar‐
guments, with up to three sub‐arguments supporting each of those
top‐level arguments. Recursively apply this approach, ensuring each
argument summarizes its at‐most‐three sub‐arguments. Order the ar‐
guments within each group by descending importance. At that point,
you’re done.

Although I personally found SCQA immediately useful, I’ll admit that
when I first tried to follow the Pyramid Principle, it gave me the same
emotional response as staring at Brutalist architecture. It’s grown on
me with practice, but I’d still recommendmost folks start by adopting
SCQA as a core practice and only adopt the entirety of the Pyramid
Principle if you get feedback that your presentations are hard to follow.

After you’ve written your structured document, gather feedback on it
from your peers and stakeholders. Aligning with stakeholders before
your presentation, sometimes called nemawashi, is extremely effec‐
tive at reducing surprises. Some of your peers should have experience
presenting to the executives andwill have useful feedback on improve‐

94

https://blog.toyota.co.uk/nemawashi-toyota-production-system

ments.

For the presentation itself, set a clear agenda, but don’t focus on rote
conformance. A greatmeeting with executive leadership is defined by
engaged discussion, not addressing every topic on the agenda. Some
will consider this a controversial position, preferring tomeasure every
meeting by its action items, but this ignores the oftenmore valuable re‐
lationship establishment and development aspects of these meetings.

Mistakes to avoid

Even if you do a great job preparing for your execution presentation,
these things sometimes gowrong. There’s nothing you can do thatwill
avoid every bad path, but you can avoid most of the anti‐patterns that
routinely sink these meetings.

Neverfight feedback. It’s very common for an executive to have a criti‐
cal piece of feedback but to not quite have the right framing to commu‐
nicate it within the moment. You want them to deliver the feedback
anyway, not hold it back and probably forget to give it later. If you
show up as resistant to feedback, then they’ll start swallowing their
comments, and you’ll get relatively little out of the meeting. Focus on
gathering feedback; don’t worry about whether you agree with it until
you have more time afterward. If there’s a decision that needs to be
made that you disagree with, then you should inject one or two pieces
of relevant data that might change their mind, but afterward, let it go.
You’ll be more effective by reflecting on the feedback and changing
their mind later than continuing to push back within the meeting.

Don’t evade responsibility or problems. Many folks try to hide issues
from their leadership, and this always goes poorly. Successful folks
look at informing executives as absolution: once it’s on the table, you
can move towards solving it rather than hiding it. This is particularly
true if an executive sniffs out a problem during a meeting. Lean into

95

the feedback, don’t evade it. You will create more credibility by agree‐
ing with their perspective and following up with more data later. You
will harm your credibility by arguing with them about it.

Don’t present a question without an answer. A frequent piece
of advice given to new leaders is to “never bring your manager a
problem without a solution.” That’s not generally great advice, but if
you present a problem to an executive without a proposed answer,
then in the back of their mind, they’re wondering if they need to hire
a more senior leader to supplement or replace you. You can’t create
alignment in the room unless you have a proposal for folks to align
behind.

Avoid academic‐style presentations. The way you’re taught to
present about topics in school is more‐or‐less the entirely wrong
approach for presenting to executives. The Minto Pyramid Principle
will steer you in the right direction if you follow its scripture.

Don’t fixate on your preferred outcome. It’s very common for folks to
get so caught up on the outcome that they want that they spend their
energy resisting the clear, unavoidable signs that it isn’t going to hap‐
pen thatway. It’s very easy to get frustrated about the “wrong” decision
getting made, but it’s helpful to keep in mind that there is a great deal
of context that you’re missing. There is no such thing as a permanent
decision: almost every decision will be reconsidered multiple times
over the next two years.

Presenting to executives can be intimidating, and this might be more
advice than helpful. If you want to boil it all down to one concise tip:
send an early draft to an executive attending themeeting and ask them
what to change. If you listen to and apply that feedback, you’ll figure
out the other pieces as you go.

96

Getting the title where you are

The best advice I’ve heard is that often reaching Staff is a com‐
bination of luck, timing, and work. ‐ Bert Fan

Most technology companies have a “career level,” which is intended to
be the highest level that most folks achieve. Senior engineer is the ca‐
reer level at most companies. While you might get let go for not mov‐
ing from entry‐level engineer to mid‐level engineer quickly enough,
most companies have no expectation that you’ll ever go from Senior
to Staff. Six years at mid‐level? Ah, that’s a problem. Twenty years at
Senior? Sure, that’s fine.

More than the expectation of progress going away, companies’ promo‐
tion systems will often impede your further progress once you attain
the career level. Sometimes the folks who already have Staff engineer
titles are protective of diluting their prestige. In other cases, organi‐
zations may be wary of having multiple Staff engineers on a single
team due to team health or budgetary concerns. However, I think the
strongest source of friction is that thenature of the job changes. A Staff
Engineer isn’t a better Senior Engineer, but someonewho’smoved into
fulfilling one of the Staff archetypes.

Even after you’ve developed the prerequisite skills to become a Staff
Engineer, there will still be one last hurdle: getting your company
to grant you the Staff title. For some, this process is a relative non‐
event, perhaps taking one or two cycles longer than anticipated but
ultimately succeeding, and for others, it may not happen at all at their
current company. About two‐thirds of the Staff Engineers I surveyed
attained their title as a promotion at the company they were already
working at, and the remaining third changed companies to attain the
title.

If pursuing that sort of role is your goal, then take the promotion to
your career level as an opportunity to reset your approach to navigat‐

97

ing your career. From that point onward, there is no standard path
to follow. The promotion and performance system will no longer be
designed around attaining a timely promotion andmay, at times, take
on the feel of gatekeeping.

To go further, you will have to take more deliberate control of your
progression, and this chapter shares the tools that have worked for
folks who’ve made the progression ahead of you.

Finding your trail

If you’ve been relying on your manager to steer your career up to this
point, the transition to a self‐directed career can feel rather abrupt.
There aremany books aboutmanaging your software career, butmost
focus from your first job until you reach Senior Engineer. Few focus
on managing your career beyond the Senior title, which is where this
chapter focuses:

• Your promotion packet is your foundational tool to demystify
the Staff promotion, prioritize the right personal development
to ensure you get there and activate your internal sponsors and
network in support of your progression.

• There is a widespread belief that moving into a Staff‐plus role
requires successfully completing a Staff project. This section
discusses the reality that most Staff Engineers do not have a Staff
project but also describes how to approach one if you’re at a com‐
pany that does require them.

• A frequent complaint from engineers is that they’re not “in the
room” where decisions happen, and they’re usually right: there
is a room, and they’re not in it. What’s less frequently acknowl‐
edged is that you’re probably not in the room for a good reason.
This section describes how to get into the room, and also how
to stay there.

• Finally, you won’t get promoted if your company’s leader‐

98

https://www.learninpublic.org/

ship doesn’t know who you are. How do you become visible
internally without hogging all the oxygen?

Apply these techniques consistently, andyou’ll be on theway towards a
Staff title, although even the best‐laid plans falter if you’re conducting
them at the wrong company.

Opportunity is unevenly distributed

One inconvenient reality you’ll encounter in pursuit of a Staff role is
that opportunity at any given company is unevenly distributed. If your
company leadership views infrastructure engineering as inherently
“more complex” or “more leveraged” than product engineering, then
opportunity will consolidate within infrastructure teams. If you work
in an organization that emphasizes shipping features, then it will be
easier to be rewarded for fixing an outage you cause than preventing
future outages. Your work will be more visible if you work in your
company’s headquarters than in a distributed office.

Many companies believe they have a vested interest in pretending op‐
portunity is evenly distributed, even when it clearly isn’t. This makes
it hard to have conviction these dynamics exist, but the trends become
clear as you collect more data.

Once you recognize these challenges, you have to assess how fixable
they are and where you want to prioritize your energy. It’s much sim‐
pler to align your approach with these unspoken currents rather than
reroute the river creating them. If you choose to address the causes of
inequality, start by finding a senior sponsor who supports the cause.
You can only change a system with sponsorship from within.

Should you trymanagement?

Most folks who reach Staff‐plus roles do not spend time in engineer‐
ing management, but some do. It’s easy to view this as a critical, life‐

99

https://lethain.com/how-to-start-distributed-engineering-office/

changingdecision, but that’s probably overthinking it a bit. If youwant
to give management a try, you should. Most companies understand
that management isn’t the right role for everyone and will be glad to
let you rotate back into an engineering role.

Those that trymanagement gain abroaderperspective that helps them
even when they move back into a software engineering role. This was
Dan Na’s experience,

I still enjoy both shipping code and running teams, and I think
the ability to do both at a high level is critical for long‐term en‐
gineering success. Charity Majors has a fantastic blog post on
this topic that I recommend reading: “The Engineer/Manager
Pendulum”. Charity argues that “manager career path vs en‐
gineering career path” is a false dichotomy, and taking time
to alternate between both roles makes you better at both. This
maps to my own experience. I’m a better manager because I
know how terrible it is to be an IC on a poorly planned project,
and I’m a better IC because I know how and when to sound an
alarm when a project is going poorly.

Ritu Vincent shared a similar perspective,

I do pendulum a decent amount because I’m interested in so
many things on both sides of the career ladder. I’m interested
in growing people, I really like working with recruiting, I’m
one of those engineers that actually enjoy interviewing, I like
understanding how teams grow. But I also really like writing
code, and after I spend some time managing, I want to get back
into the code and hack around a little bit.

Some folks try management and end up hating it. Joy Ebertz didn’t
care for engineering management much,

I actually managed for about a year and a half in the middle
of my time at Box and found that I hated it (you can find more

100

https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/
https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/
https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/

about that in my blog post on that topic). That said, I found
that there is actually a lot of overlap between management and
staff+ roles in most companies.

Even though Joy hated her management experience, she felt it might
have helped her longer‐term career,

It’s possible that if I hadn’t taken a meander through manage‐
ment, I would have gotten to Staff sooner. That said, I don’t
regret doing it, and I learned a lot about how people think, how
organizations are run, and how larger projects are prioritized.
All of these have continued to help me do my job on the IC track
and likely helpedme further get promoted to Senior Staff. While
I do think it’s distinctly possible that it slowed down when I got
to Staff, I’m actually less sure for the next level ‐ I think there’s
a real chance I would have hung out at Staff longer without it.
All of this is to say that even though I didn’t take the most direct
route, I still learned a lot that has helped me out long term.

The final caveat I’d give for someone considering this switch is that
peoplemanagement is bigger than simplymaximizing your trajectory
to a Staff Engineer role. You’ll have a profound impact on the folks you
support as amanager, and if you take it onwith thewrongmotivations,
you’ll regret the experience, but not nearly as much as your team will.
If you’remotivated to help your teamgrow and succeed, then go ahead
and do it; if you’re only doing it for yourself, then don’t.

A semi-permeable boundary

As a final caveat, Staff‐plus titles are leadership positions. It’s uniquely
challenging to gain a leadership position if the existing leadership
team doesn’t identify with you as a potential member. What that
means is, unfortunately, folks with the privilege of seeming like they
are already part of the existing leadership team have a much easier

101

https://code.likeagirl.io/why-i-left-management-the-engineering-technical-track-vs-management-track-abef5b1d914d

time making the transition.

If you read through this chapter and become increasingly frustrated
that you’re already doing everything here, then it’s possible that you’re
experiencing that structural disadvantage. Roughly half the women I
spoke with had to change companies to attain the Staff title, whereas
promotion friction generally didn’t come up as a topic during discus‐
sions with other folks.

Don’t ignore those experiences–they’re real and many folks feel
stymied by them–by also take hope that there are many successful
role models out there regardless of how you identify and how you
want to plot your course towards Staff Engineer.

102

Promotion packets

Some folks think of their promotionpacket as the capstone of reaching
a Staff‐plus role, but I’ve seen many folks succeed by taking an oppo‐
site approach: starting to write their first Staff promotion packet long
before they think they’re likely to be promoted to Staff, much the way
they might use a brag document. Used this way, your packet becomes
the map to accomplishing your goal.

It’s likely your company will have its own format for promotion pack‐
ets, and eventually you’ll need to translate your packet into that format
before it’s submitted to an internal promotion committee or process,
but there’s no need to rush it. You’ll spendmore time relying on it as a
guide than as a formal artifact for official review, so optimize for the
former.

For traversing towards your Staff‐plus promotion, a general template
format that’s useful is:

• What are your Staff projects? What did you do? What was the
project’s impact (including a well‐defined goal)? Whatmade this
project complex? Keep it very short and then link out to support‐
ing design documents

• What are the high‐leverage ways you’ve improved the organiza‐
tion?

• What is the quantifiable impact of your projects? (Did you in‐
crease revenue by $10 million? Did you reduce year‐on‐year cus‐
tomer support tickets by 20%?)

• Who have you mentored and through what accomplishments?
• What glue work do you do for the organization? What’s the im‐
pact of that glue work?

• Which teams and leaders are familiar with and advocates for
your work? What do they value about your work? One sentence,
include data (e.g. survey data) when possible

103

https://jvns.ca/blog/brag-documents/
https://lethain.com/goals-and-baselines/
https://www.slideshare.net/TanyaReilly/being-glue

• Do you have a real or perceived skill or behavior gaps that might
hold you back? For each, how would you address the concern?
One sentence each

It’s useful to spend some time to write out those answers yourself, but
getting promoted into a leadership role isn’t a solo activity – it’s some‐
thing you can only accomplish with a team of folks supporting you
along the way.

The approach that I recommend for iterating on your packet is:

1. Answer why you’re doing this. Many folks choose not to pursue
the Staff level; you should have a reason why this is important to
you. If you don’t, you’re liable to find yourself in a role you don’t
enjoy.

Michelle Bu warns, “My first piece of advice to engineers is that
they should avoid pattern matching in ways that lead them to‐
wards work they don’t enjoy. I’m deeply energized by the work
I do, partnering with teams to solve abstract modeling and de‐
sign problems. It takes a certain amount of fortitude to try again
and again after many rounds of feedback. To be honest, it’s not
for everyone. If you’re more focused on hitting Staff than on set‐
ting yourself up to do work that energizes you, it’s easy to end up
stuck in a role you don’t want.”

2. Temper your expectations. Promotions, especially at this level,
are built over quarters, halves, and years. Avoid the expectation
of instant results

3. Bring yourmanager into the fold. Bring the promotion packet to
your next 1:1 with your manager, and tell them that attaining a
Staff promotion is a goal of yours. Review the empty packet with
them, and ask them what’s missing, what to emphasize, and if
they’d recommend adding steps to the workflow. Your goal is to
ensure they know this is something you’re interested in and to

104

solicit their guidance on your approach.

Ritu Vincent suggests, “People frequently come to me and ask,
‘What should I do next to reach Staff?’ One of the things that I tell
them is to be super open and honest with their manager about
what youwant fromyour career. Amistake Imade early on inmy
one‐on‐oneswas tellingmymanagerwhat I thought theywanted
to hear, instead of what I actually felt.”

4. Compile the promotion packet. Now write the packet

5. Edit the promotion packet. Wait two days, reread your promotion
packet and edit for content, clarity, and context

6. Edit the promotion packet with peers. Share your promotion
packet with several trusted peers to get feedback, preferably
peers already in a Staff‐plus role. Peers are often better at
identifying your strengths and contributions than you are, and
they are closer to your work than your manager might be

7. Edit the promotion packet with your manager. Share your
promotion packet with your manager requesting feedback. Ask
for a particular focus on enumerating gaps to address. Ask if
you can spend time in the following 1:1 discussing the kinds of
projects and opportunities to both address gaps and make the
packet stronger

8. Periodically review the promotion packet with your manager.
Continue to review the promotionpacketwith yourmanager dur‐
ing your career and performance‐oriented 1:1s. Both you and
your manager should use it to steer you towards demonstrating
the promotion criteria over time. This is particularly important
to do if your direct manager changes. Maintaining this sort of
document and reviewing it across managers will help mitigate
the loss of progress towards your promotion that often occurs
after a manager change

105

If you methodically follow this advice, then you’ll put together your
first Staff promotion packet long before you’re nominated for promo‐
tion. From there, you’ll use the packet to focus your attention and your
partnership with yourmanager towards that goal. It won’t necessarily
get you there quickly, and it even might not get you there at your cur‐
rent company, but it will consolidate your energy on the development
and work that’ll move you towards your goal.

When it finally does come time to write your formal packet, it’ll be
a matter of editing down what you’ve collected into the official tem‐
plate rather than an archival process of dusting through years of ef‐
fort. Hopefully, nothing goes awry in the promotion process, and a
Staff title follows.

106

http://lethain.com/promo-pathologies/

Find your sponsor

Having a sponsor was also definitely important. My manager
and I had a fantastic relationship, and I also had a great rela‐
tionship with my skip‐level manager. I think that played a big
part as well. ‐ Ritu Vincent

As I’ve spokenwithmore folks trying to reach their first Staff‐plus role,
most folks run into similar challenges. Many havemiscalibrated their
own impact and simply haven’t done the work yet to operate at that
level: a Staff Engineer isn’t just a faster Senior Engineer. However,
there’s a large cohort who have done the work–they’re visible across
their organization and have pulled together a strong promotion
packet–but are still struggling to have that work recognized.

These folks are often frustrated by the distance between their impact
and their recognized impact and ask their managers and peers for
feedback on closing that gap. They’re told to complete a staff project
or to create space for others. For folks who haven’t done the work yet,
this is great advice, but for folks who have these checkboxes are a dis‐
traction: what they’re really missing is a sponsor willing to push for
the recognition of their existing work.

It’s common to view promotion systems through the lens of other
systems that have evaluated us throughout our life such as school,
but this falsely frames performance evaluation as a solo activity.
Whether your company does ad‐hoc promotions or uses a calibration
process, promotions are a team activity and as Julia Grace, then of
Slack, advised me once during a job search, “Don’t play team games
alone, you’ll lose.”

Finding your sponsor

The most important member of the team guiding your promotion is
you yourself. The second most important person is your organiza‐

107

https://lethain.com/perf-management-system/
https://lethain.com/perf-management-system/
https://twitter.com/jewelia

tional sponsor. Lara Hogan has written on sponsorship at length, but
roughly this is the person speaking up for yourwork in forums of influ‐
ence and when advocating for constrained resources (like the budget
for salary increases).

While you’ll likely have a variety of sponsors, in the context of getting
promoted—especially to a Staff‐plus role—this almost always needs to
be your direct manager. They’ll be the person to take your drafted pro‐
motion packet and turn it into the company’s format. They’ll be the
person to advocate for your promotion during a calibration meeting
as others drill into your qualifications. They’ll also be the person who
has to have an honest conversation with you about the gaps you still
have before you’re a strong promotion candidate.

While you’ll always need your direct manager engaged as your spon‐
sor, you may need additional sponsorship. If your manager has never
promoted someone to a Staff‐plus role before, they’re likely going to
get surprised or make a misstep along the way. Invest in establishing
a relationship further along your management chain. You don’t need
to spend much time with your skip‐level manager, but if they aren’t
familiar enough with your work’s impact to remember it in a meeting
two months from now, you’re unlikely to get promoted into a senior
role.

Activating your sponsor

The first step of activating your sponsors is explicitly sharing your
goals. “I’m looking to be recognized as a Staff Engineer” is a great
start. Ritu Vincent mentioned this as her top advice for folks seeking
Staff‐plus roles,

People frequently come to me and ask, “What should I do next
to reach Staff?” One of the things that I tell them is to be super
open and honest with yourmanager aboutwhat youwant from

108

https://larahogan.me/blog/what-sponsorship-looks-like/
https://staffeng.com#ritu-vincent

your career. A mistake I made early on in my one‐on‐ones was
tellingmymanagerwhat I thought theywanted to hear, instead
of what I actually felt.

Once they’ve identified their sponsors, many folks see their work as
complete: it’s up to the sponsor to do the heavy lifting. This usually
fails! Sponsors are folks with more organizational capital than band‐
width to deploy that capital, and they’ll help you most when you align
the pieces for them. Ask your sponsor howyou can support their spon‐
sorship. Owning your career isn’t only about asking for things. It is
about that, but it’s much more about facilitating those things happen‐
ing.

Reviewing your promotion packet collaboratively with your sponsors
is a great way to facilitate this conversation. Focus on asking for what
the gaps are in a way that doesn’t prompt your sponsor to make up
an answer. Most folks forget they can answer questions with, “I don’t
know,” and instead make up unhelpful answers if you push them to
answer questions they’re uncertain about. If you keep getting answers
like, “Work on larger, high impact technical projects,” then you’re ask‐
ing in the wrong way, the wrong questions, or the wrong person.

One starting prompt is, “If I don’t get promoted this cycle, what are
some of the likely causes?” Another question worth asking is, “What’s
themost effective thing I can do tomakemyself a stronger candidate?”
That said, the best questions are very specific and do a lot of the work
for the answerer. Think about how hard it is to answer those ques‐
tions compared to a question like, “This quarter I completed the API
refactor, which I thought would demonstrate Staff‐level work, but the
schedule slipped a lot, and it ended up frustrating our product man‐
agers because their work got dropped. How could I have handled this
project more effectively?” The latter question is much easier to give a
useful answer to, even if the answerer isn’t too familiarwith the details
of the project.

109

Finally, remember that activating your sponsor isn’t a transactional
thing to do once before your promotion. Build a relationship over
time, and put in the work to help them when they need your support.
Stay aligned with their initiatives. Suppose they need folks to join a
working group, volunteer, and put in the work. These folks have a lot
of folks asking them for things, and they are pretty cognizant of folks
who show up right before promotion time. I once had a colleague who
rarely visited the office but always visited the office the week before
promotion decisions were made. People noticed.

What if it doesn’t work?

If you find yourself in a situation where you and your manager don’t
work together well, which isn’t quite the same thing as liking each
other, then you’re not going to get promoted into a leadership role.
Your manager has too direct an influence on your impact and your
perceived impact for that to happen. Similarly, you might have an
amazing relationship with your manager, who then leaves the com‐
pany. You’re hardly doomed, but your promotion clock will likely get
reset as you build a relationship with your newmanager. (Sometimes,
this works out the other way, with your newmanager working hard to
prove themselves to you by advocating on your behalf.)

You’ll cheat yourself if you immediately try to switch teams or compa‐
nies after running into friction with your manager. Companies gener‐
ally don’t allow transfers unless yourmanager approves it, so youmay
burn a bridge to nowhere that you’re standing on. More importantly,
you’ll lose the opportunity to develop your skill of working with folks
you don’t immediately click with: it’s not a fun skill to develop, but
leadership always involves influencing and building relationshipswith
folks with conflicting goals and styles.

If you’ve spent six months proactively trying to make the relationship
work, then it probably is time to exploremoving teams and to perhaps

110

consider switching companies. This is one of many cases where it’s
extremely helpful to have developed your relationship with your skip‐
levelmanager, who can help you find a new team, even if you and your
manager aren’t working together effectively.

111

Staff projects

There isn’t an explicit expectation, nor is it listed anywhere as
a formal requirement, but it is understood that you’ll complete
a Staff Project to get promoted. I can’t think of any Staff pro‐
motion that didn’t include a really strong project, typically a
multi‐person project where the engineer was the Tech Lead. ‐
Ritu Vincent

A popular recurring idea around reaching a Staff‐plus role is that first,
you need to successfully complete a “Staff project.” A project that is
considered complex and important enough that the person who com‐
pletes it has proven themselves as a Staff engineer. However popular
this idea is, if you’re pursuing a Staff‐plus role, it’s important to pierce
the mythology of these projects and focus on the experiences of folks
who’ve walked the path before you.

The short answer on Staff projects is that most engineers don’t com‐
plete one as part of reaching a Staff role, although a large minority do
complete one, particularly folks who attain the role via promotion at
a company they’ve grown up in. For the folks who don’t complete one,
typically, it’s either because they accumulated a track record of suc‐
cess over a longer period without a single capstone or because they
switched companies to reach the title.

We’ll dig into a few different angles on staff projects:

1. Folks who didn’t complete Staff projects
2. Folkswhodid complete Staffprojects, includingwhere theydon’t

end up working as planned
3. Identifying and approaching your Staff project

Into the messy details, we go.

112

No Staff project required

When I asked folks whether they had a Staff project, some of the an‐
swers were quite concise:

• Joy Ebertz, “I actually didn’t really have a Staff Project.”
• Diana Pojar, “No, I did not have an assigned ‘Staff Project,’ and
that is not something that is part of the promotion process at
Slack.”

Some folks were even skeptical of the Staff project concept overall.
Nelson Elhage said,

I’m instinctively a little bit wary of this sort of idea of a
staff project, in part because one of the archetypes of Staff
Engineers that I’ve seen are people who don’t necessarily run
grand projects themselves or do big things. But just are sort
of incredibly effective gurus and routers who make the whole
engineering organization run better.

There are also folks like Dan Na or Damian Schenkelman who took a
detour through engineering management to reach the role. Damian
describes bypassing the Staff project,

I did not. Because of how I grew at Auth0, I kind of “skipped
that part”. As a Director at a startup, I got the opportunity to
technically lead a lot of big, critical initiatives, but there was
no specific/explicit “staff/principal project”.

From these stories, it’s clear that anyone who tells you that you must
complete a Staff project to reach a Staff‐plus title is wrong: there are
many avenues to reach Staff‐plus titles without doing a Staff project,
with a stint in engineering management prominent among them.

113

https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/

Staff project required

However, it’s also true that many companies require, or informally en‐
force, Staff projects for internal promotions, and consequently, many
folks do take on a Staff project as part of their role transition.

Ritu Vincent describes her experience at Dropbox,

I definitely had a Staff Project. Back in the day, Dropbox was
initially a consumer product that people downloaded and in‐
stalled on theirmachines. Whenwe launchedDropbox for Busi‐
ness, there was a request for both your personal and work Drop‐
box accounts to work simultaneously, including being able to
switch across them without needing to log out and log back in.
The initial implementation was written under immense time
pressure, and it ran multiple Dropbox processes. One for your
personal account and another for business. My Staff projectwas
to make it so a single Dropbox process could run with multiple
users logged in. The hard part was that the project stretched
from the kernel all the way to the user interface. I had to un‐
derstand every single layer of the Dropbox system. Initially, we
thought it would take six months, and it ended up taking eigh‐
teen months. It took up most of the Desktop Client team’s re‐
sources for quite a while.

Ras Kasa Williams joined an inflight project that he later became the
lead on, which served as his Staff project:

I joined Mailchimp as a Senior Engineer. I was immediately
added to a project team (which included an Engineering
Director and two Principal Engineers) meant to build out
Mailchimp’s first internal, self–service analytics platform.

A key aspect of this projectwas being effective and executing at a
high level. For better, or for worse, having two other Principal
Engineers meant expectations for me likely weren’t that high.

114

https://staffeng.com#ritu-vincent

But I was able to jump in immediately and start contributing
to core aspects of the project with very little hand‐holding from
them; by the end, I was one of the key contributors on the team.
I would ultimately be formally installed as a tech lead to help
continue shepherding that project work as it was absorbed into
my current engineering group, Data Services.

Few companies write down their Staff project requirements. They’re
more frequently the sort of “soft gate” that’s brought up during a pro‐
motion meeting, sometimes to the surprise of both the manager and
the would‐be Staff engineer. The most reliable technique for uncov‐
ering these requirements is your “sure thing” promotion not getting
approved, but that isn’t much fun. Almost as reliable and much less
frustrating is relying on the strategy of maintaining and getting feed‐
back on your promotion packet well in advance of your promotion at‐
tempt.

Why you should do a Staff project

Sometimes it’s hard to determine the precise line between gatekeep‐
ing and evaluation, and the premise of a Staff project exists in that
hazy realm. Taking on a project of immense scope, navigating that
ambiguity, and delivering it successfully is an effective way to distin‐
guish folks who’ve reached Staff‐plus impact, but it’s also clear that
many folks attain Staff‐plus roles without completing such a project.

My advice is that although you can attain a Staff‐plus role without com‐
pleting a Staff project, they’re a particularly valuable opportunity to
develop yourself as an engineer. You will personally be stretched and
grown by this kind of project in a way that other varieties of Staff level
work won’t.

Keavy McMinn describes how her Staff project helped her,

I’ve never heard it given a name, but I understand the idea.

115

I did lead and architect that type of project ‐ solving gnarly
engineering problems, with large impact for the company ‐ a
few times, but unfortunately, they didn’t lead to me being pro‐
moted. They did lead to my career progression though. Those
projects gave me the experience, knowledge, and confidence to
position myself differently. Even to give public conference talks
or know that “I’ve done X and could do X again.”

Although each of these projects is different, there are a few typical
characteristics that capture why they’re so effective at stretching you
as an engineer:

• Complex and ambiguous ‐ early in your career, you’re given
well‐defined problems, but as you get deeper into it, you’ll
increasingly encounter poorly defined or undefined problems,
and Staff projects will generally start with a poorly scoped
but complex and important problem. Your project might start
with only the assertion that your company’s aging monolith is
crippling product development. From that broad, unclear (and
potentially wrong) statement, you’ll have to identify a concrete
approach that works.

• Numerous and divided stakeholders ‐ the easiest projects start
with organizational alignment around both the problem and the
solution, but your Staff project might likely start with neither.
It might be an area in which management views as an existen‐
tial risk, but many engineers feel it is good enough. It might
be an area that everyone agrees is a problem, but with strong
factional disagreement about approach, for example, disagree‐
ment between pursuing a service strategy or reinvesting in your
existing monolith.

• Named bet where failure matters ‐ it’s going to be a project im‐
portant enough that senior leadership talks about it at all organi‐
zation or all‐companymeetings. This means folks will be watch‐

116

ing your work closely, and any failures will be very visible. Suc‐
cess will be highly visible, as well!

If you meet these, it’s probably a staff project. These can be pretty
nerve‐wracking, which is also why they’re so effective at developing
you.

Getting access to Staff projects

While deciding that you want to take on a Staff project is the first step,
you still need to get access to these projects, which depends on your
management chain trusting you enough to bet on your success.

This comes down to three factors.

1. First is learning to stay aligned with your leadership team, some
strategies for which are described in Getting in the room and
Staying aligned with authority.

2. Second, you need to be known to have the technical aptitude for
the problem at hand, which requires Being Visible.

3. Third, is less in your control, which is your company having a
pressing need to solve a Staff‐level problem, which can require
some patience.

Should you pursue a Staff project?

In summary, if you’re looking to get promoted within your current
company and haven’t previously held a Staff or management title be‐
fore, then you’ll likely need to pursue a Staff project to establish your‐
self at that level. In other cases, you likely won’t.

In any case, it’s worth keeping in mind that whether or not these
projects are required, they are also some of themost challengingwork
you can find and are the sort of work that will stretch and develop you
into a better engineer. In the short‐term pursuit of the title, it may

117

well be optimal to avoid these projects, but in the long‐term pursuit
of self‐growth, they’re irreplaceable.

118

Get in the room, and stay there

One of the most common frustrations I’ve heard from engineers is
that they’re not in the room where important decisions are being
made. They don’t understand the company decisions and have
important context that seems to be missing or ignored. Staff‐plus
engineers frequently cite access to “the room” as a major benefit of
their level, and titles do increase the likelihood that you’ll be involved
in decisions that impact you.

However, it’s important to remember there’s no single “room” to en‐
ter. Getting into the right room isn’t a one‐time challenge to be faced.
Entering rooms will be an ongoing, iterative career challenge. That
means it’s worth getting good at!

Early in your career, it might be a sprint pre‐planning meeting with
your tech lead and product manager. Later it might be a quarterly
planning meeting, an architecture review, the performance calibra‐
tion, the engineering leadership team, or the executive team. There
will always be another room to enter. To reach senior levels, you have
to become effective at not only entering but also staying in these rooms
of power.

Getting in the room

To get into the room, you need:

• To bring something useful to the room… This could be details
on a critical project, context from a critical team, subject mat‐
ter expertise related to the room’s purpose, experience running
a similar project or team at a previous company, a relationship
with a key relevant customer, or something else entirely.

• …that the room doesn’t already have. It’s not enough to have
something useful to bring to the room. It also needs to be a per‐
spective that isn’t already present within the room. Small groups

119

https://lethain.com/scaling-consistency/
https://lethain.com/perf-management-system/
https://lethain.com/perf-management-system/

function better than larger ones, so operating forums generally
sacrifice redundancy and representation for efficiency. To be
included in those rooms, you’ll need to bring something distinct
from the current membership.

• A sponsor in the room. These rooms have limited slots and
have to function well as a group. To get into the room, you’ll
need someone to sponsor your membership. Your sponsor is
allocating their social capital towards your inclusion, and their
peers will judge them based on your actions within the room.
These rooms often have a mix of seniority levels, so it’s often
the case that your sponsor’s manager is in the room evaluating
them based on their decision to sponsor you.

• Yoursponsorneeds toknowyouwant tobe there. Your sponsor
is probably in many different rooms and probably daydreams of
leaving most of those meetings behind them. They won’t neces‐
sarily assume you want to be in any particular meeting, and in
fact might assume you don’t want to be there at all. Make sure
that they know if you want to be included.

How you bring something useful to the room is going to be context‐
specific to you and the room you’re trying to enter: there isn’t any sin‐
gle pattern to follow. Whether someonewith similar context is already
in the room is also unique to your circumstances, and at some points
in time, the only options are to wait or look for another room to enter.

On the other side of things, sometimes the easiestway to increase your
value to the room is by decreasing the cost of including you. Some of
the approaches that work well are:

• Stay aligned with your manager. Folks evaluate leaders on
how aligned their teams are with their announced approach. If
they’ve proclaimed a shift to continuous deployment, but their
team is chanting for release trains, then folks get skeptical about
who is leading who. You’ll be much more likely to be sponsored

120

into the room if you’re highly aligned with your sponsor. If
you’re particularly aligned, they’re more likely to yield their own
seat to you and stop attending.

• Optimize for the group. One of Stripe’s old operating princi‐
ples was “Optimize for Stripe,” and that mentality of optimizing
widely for others builds trust and confidence in your judgment.

• Speak clearly and concisely. Learn to speak concisely: as you
develop an economy of speech, you’ll be able to contributemore
ideas with less time. Learn to speak clearly: if folks don’t under‐
stand your proposal, then it doesn’t matter how good it is. Keep
inmind that it’s your obligation to be understood, not the obliga‐
tion of everyone else to understand you.

• Be low friction. It’s easy to fall into the trap of viewing each
discussion as the last opportunity to stop an impending disaster.
With that mindset, each discussion is a near‐emergency, and
emotions run high. Those sorts of discussions usually spend
their time draining frustration rather than making forward
progress. If you’re known as someone who can navigate diffi‐
cult conversations effectively, you’re much more likely to be
involved.

• Come prepared. Some companies infantilize their engineers,
accepting that even very senior engineers won’t read the agenda,
do the pre‐reads or prepare for the discussion. There’s a consid‐
erable gap between what’s tolerated and what’s rewarded, and
you’ll stand out if you take the time to organize your thoughts be‐
fore each meeting. Equally more important is following up on
what you committed to.

• Focus and be present. Once you’ve entered the room, be sure to
show up and engage. Be attentive and engaged. Whatever else
you want to be doing, it will wait.

• Volunteer for low‐status tasks. If someone needs to take notes,
raise your hand. If someone needs to follow up on action items,

121

be available. Prioritize being useful, especially when it isn’t the
most exciting work.

To get into the room, you have towork both the numerator and denom‐
inator: keep developing a unique and useful perspective while also
becomingmore effective at delivering that perspective within the con‐
straints of a meeting.

Staying in the room

Getting into the room is your first hurdle, but the second hurdle is stay‐
ing in the room. Most important is to keep doing the things that got
you into the room: bring important context into the room, present a
polished version of yourself, be concise, be flexible.

There are a few patterns that will consistently get you kicked out of the
room:

• Misunderstanding the room’s purpose. Each room has its own
purpose, and you’ll create friction if you attempt to use a room
against the existing group’s intent. It’s very common for the ex‐
ternal perception of a given room’s function (“they make all the
decisions in the leadership teammeeting”) to be rather far from
how the room thinks of its role (“we don’t make decisions, just
surface problems to discuss”). Take the time to understand how
the room operates and integrate into it with respect for that in‐
tention.

• Being dogmatic. As rooms get more senior, they have to discuss
very sensitive topics (compensation, layoffs, promotions, acqui‐
sitions, etc), and they have a fixed amount of time to work to‐
gether each week. If you’re dogmatic, you will create friction
that slows down discussion and impedes the group’s ability to
make progress.

• Withholding consent. Effective groups are formed from individ‐

122

https://www.tablegroup.com/books/dbm/
https://www.tablegroup.com/books/dbm/

ualswho arewilling to disagree and commit. You can often force
a group towards your perspective by withholding your consent
until thinking moves your way, but the group’s pace will slow to
a halt, and you’ll likely get removed from it.

• Sucking the oxygen out of the room. There are brainstorm dis‐
cussions where every idea is welcome, and there are moments
when you’ve shifted into operating mode to unblock project ex‐
ecution, and you have to read the room on which is happening.
Usually, this comes from an urge to show value, but remember
that you’re in the room because of what got you into the room,
not in the hopes that entering the roomwill magically transform
you into someone entirely new.

• Embarrassing your sponsor. Remember that you got into
a room because someone in the room advocated for your
inclusion.

• Being flakey or not showing up regularly. There are only so
many slots, and the person running the meeting will prioritize
them on people who show up.

That said, I think it’s easy to get caught up worrying too much about
staying in the room. Sometimes you’re better thinking about whether
the room’s a valuable place to invest your time.

Exiting the room

It’s important to remember that while there are infinite rooms to be
in, there’s no room where the work actually happens. You’ll be most
impactful if you’re selective on which rooms you stay in. While I’ve
met many folks who resent not being allowed entry into some room
they’re fixated on, I’ve never met anyone who regrets leaving a room
too soon. If any given room doesn’t feel useful, exit the room. While
exiting, sponsor someone else into the opportunity you’re leaving be‐
hind.

123

https://en.wikipedia.org/wiki/Disagree_and_commit
https://lethain.com/showing-value/

Being visible

When folks, particularly women and non‐binary people, come
to me for advice, I think they expect me to talk about how to
grow as a technical leader, and are surprisedwhen I say “You’ve
probably already got the technical chops, what you need to do
is work on your reputation at the company.” For better or for
worse, you can’t get to Staff without a good reputation. ‐ Katie
Sylor‐Miller

Bert Fan’s best advice for those trying to reach a Staff‐plus role was,
“Often reaching Staff is a combination of luck, timing, andwork.” Tim‐
ing is a particular sort of luck, so you can simplify this even further
down to just luck and work.

If you’re fortunate, then you won’t have to pursue a deliberate path to
a Staff‐plus role. You’re already working on your company’s top pri‐
orities, have a well‐positioned manager who cares about supporting
your career and areworking from your company’s headquarters office.
If you’re starting with none of those things, getting promoted will be
quite a challenge, but don’t count yourself out: it’s easy to underesti‐
mate your own role in getting lucky.

Oneof themost effectiveways to get luckier is to bemore visiblewithin
your organization. There are, of course, very quick, verynegativeways
to increase your visibility, so I’ll refine the statement a bit. Your goal
is to be known for good things while minimizing the organizational
bandwidth you consume to do so.

Why visibility matters

Katie Sylor‐Miller describes visibility as a critical piece of getting pro‐
moted to Staff,

Something I haven’t talked about enough is communication
and transparency. A big part of being promoted to Staff is mak‐

124

https://staffeng.com#katie-sylor-miller

ing sure that your work is visible, that people know your name
and you have a good reputation.

Staff‐plus roles are leadership roles, and by recognizing you with such
a position, the company is bringing you into its leadership team. The
existing members of that team want to be comfortable that they’re ex‐
panding their ranks with folks they believe in, and they can’t believe
in you if they don’t know you.

If you’re operating without much visibility within your company,
this may likely come across as cliquey or gatekeeping behavior.
Conversely, if you are well‐known internally, this may feel like the
necessary cost for maintaining a consistent set of expectations and
criteria for folks taking on leadership roles – how could you maintain
consistency if you are unfamiliar with their work?

It’s interesting to briefly reflect on how inclusive organizations miti‐
gate the negative gatekeeping aspects of validating folks as appropri‐
ate additions to your leadership team. The answer is that they design
mechanisms to ensure the full swath of potential leaders get exposure
to the folks who will evaluate them for leadership roles. Conversely,
less inclusive organizations inadvertently center access on folks who
most aggressively self‐advertise.

Internal visibility

The single best way to create internal visibility is to work on the things
that matter to your company and company leadership. This path is
also themost alignedwith how awell‐managed companywill evaluate
your contribution.

Sometimes that isn’t enough, though, and some other strategies are:

• Write and distribute more long‐lived documents, like architec‐

125

ture docs or technical specifications.
• Lead (and, to a lesser extent, participate in) company forums like
architecture reviews, company all hands, and learning circles.

• Be a cheerleader for your team’s and peers’ work on Slack.
• You can also cheerlead via email instead of Slack.
• Share weekly notes of your work to your team and stakeholders
in a way that other folks can get access to your notes if they’re
interested.

• Contribute to your company’s blog.
• Attend, or potentially even host, office hours for your team or
org.

Find the right mix of activities that leverage your strengths, aren’t al‐
ready overburdened with volume, and feel authentic to you. If you’ve
never done much communication of your work, it may feel awkward
to self‐promote your work. You never want to wholly lose that sense
of awkwardness–restraint helps–but you will have to get comfortable
with some of it.

Executive visibility

To be promoted to a leadership role, the most important kind of inter‐
nal visibility is executive visibility. Using the promotion packet, you
will create visibility with your manager, but it’s helpful to go further.
It’s particularly valuable to find opportunities to build a relationship
with your manager’s manager, but all positive, visibility at that layer
will be helpful to you.

These are the folks who tend to be in the room that approves promo‐
tions into Staff‐plus roles, and they rarely support folks whose work
they don’t know.

126

https://lethain.com/weekly-updates/

External visibility

It’s helpful to complement your internal visibility work with external
visibility work. There are many successful Staff‐plus engineers with
no external presence, but many find external visibility contributes to
their career.

Compared to an exclusively internal focus, one advantage of building
an external presence is that there’s a lot more room to create a niche
and name for yourself. Internal efforts often end up competing for
attention with your peers in a way that external efforts simply don’t.

In terms of how to create this sort of visibility for yourself and your
work, it could be giving a conference talk like Keavy McMinn or Dan
Na, going on a podcast likeMichelle Bu, turning a problem into a web‐
site and book like Katie Sylor‐Miller ’s ohshitgit, or creating a mailing
list like Stephen Whitworth’s High Growth Engineering.

Should you focus on visibility?

You can always have more visibility within your organization, but at
some point, increasing your visibility is likely reducing the opportuni‐
ties for others to create visibility for themselves. Internal visibility is
not strictly zero‐sum, but it’s constrained by the attention of the folks
you want to see your work.

My advice would be to use the promotion packet exercise to identify if
the lack of visibility is likely to hold you back in the promotion process.
If so, work to clear that threshold, but not much further. Visibility is a
transient currency. Learning and developing yourself is a permanent
one; focus on the latter once you’ve done the minimum to clear the
former’s cliff.

127

https://staffeng.com#katie-sylor-miller
https://ohshitgit.com
https://highgrowthengineering.substack.com

Switching companies to get the title

I was hired at Fastly as a Principal Engineer. So, to be honest,
for me, the biggest factor was changing companies. The type
of work I was doing didn’t dramatically change, but changing
companies was the thing that ultimately enabled me to get the
title. ‐ Keavy McMinn

My father was a professor of economics. After he completed his
Ph.D. in his late twenties, he started teaching at one university, got
tenure at that university, and walked out forty‐some years later into
retirement. Working in technology, that sounds like a fairytale.

There are very few software companies with a forty‐year track record,
and even fewer folks whose forty‐year career consisted of one em‐
ployer. There used to be a meme that many engineers spent either
one or four years at each company tomaximize their equity grants and
then bounced on to the next. If that ever happened, it certainly isn’t
common behavior for folks who aspire towards or reach Staff‐plus
roles.

Instead, generally, those folks stay and are rewarded for staying at a
given company as long as the circumstances support their success. If
those circumstances change, they tend to either leave shortly there‐
after or spend a while burning out and then leave after exhausting
their emotional reservoir.

It takes years to build the visibility and social credibility to get pro‐
moted from a Senior Engineer role to a Staff‐plus role, which makes it
very difficult to walk away if you feel like you’re just one hump away
from the promotion. Leaving, it can feel like, means starting over
from scratch.

Then again, as described by Keavy McMinn, it’s common for folks to
attain their first Staff‐plus title by joining a new company. Even with

128

https://lethain.com/forty-year-career/
https://staffeng.com#keavy-mcminn

all your internal credibility, sometimes leaving is the most effective
path forward.

What’s the right decision for you?

Before going further, I want to recognize two very different job‐
switching experiences: one of privileged flexibility and another of
rigid constraints. Your residency might depend on a work‐sponsored
visa. You might be supporting an extended family. You might be
constrained to a geographical area with few employers. This advice
focuses on the former circumstances, which are more common
circumstances for someone who’s deep enough into a technology
career to pursue a Staff role. You should absolutely discount it to the
extent this doesn’t reflect your circumstances.

Why leaving works

The company that knows your strengths the best is your current com‐
pany, and they are the companymost likely to give you a Staff‐plus role.
However, actually awarding the role depends on so many circumstan‐
tial concerns that this isn’t how it works out in practice.

If your current team is very senior, it may be hard to justify your im‐
pact at the Staff engineer level because it’s being attributed to your
peers. Your manager might have a limited budget that doesn’t have
room for another Staff engineer. You might lack an internal sponsor.
There simply might not be the need for an additional Staff engineer
at your company. Any of these can mean that while you ought to be
promoted, your current company won’t.

Conversely, when you interview for new roles, you can keep interview‐
ing until you find a company that’s able to grant the title. You can also
deliberately choose to interview at earlier stage companies who are
likely to value your experience more highly. The interview process

129

also brings an automatic sponsor with it–the hiring manager–whose
incentives will never bemore aligned with yours than in the interview
process.

The technical interviews are an inconsistent and unreliable predictor
of success, which is bad for the industry and bad for companies, but
works in your favor if you’re set on attaining a Staff‐plus role and are
willing to conduct a broad search. Interviewing creates the opportu‐
nity to play “bias arbitrage,” finding a company that values your par‐
ticular brand of bullshit disproportionately. That might be a company
that values folks with conference speaking visibility, your experience
designing APIs, or your Ph.D. thesis on compilers.

Similarly, sometimes you’ll get into a rut at a companywhere your rep‐
utation is preventing forward progress. Perhaps you’ve tagged “diffi‐
cult” after flagging inclusion issues. Maybe you embarrassed an influ‐
ential Director at lunch, and they’re blocking your promotion. A new
company lets you leave that baggage behind.

Yeah, of course, it’s always an open question whether you can really
leave anything behind you in the tech industry. It can feel a bit cliquey
at times. If you’ve worked in tech hubs, at larger companies, and for
more than ten years, then you almost certainly have mutual connec‐
tions with the folks interviewing you.

If you have a bad run at a company, maybe your manager was a bully,
or maybe you were going through a challenging period in your own
life, it can feel like a cloud poisoning your future prospects. That said,
much like the interview process in general, references and backchan‐
nel reference checks are deeply random. If you need any further ev‐
idence of that, look to the serial harassers who continue to get hired
job after job at prominent companies.

130

Things to try before leaving

If you’re planning to leave due to a lack of interest, excitement, sup‐
port, or opportunity, it’s worthwhile to at least explore the internal wa‐
ters first. This lets you carry your internal network with youwhile still
getting many of the advantages of switching companies. Depending
on your company’s size and growth rate, this might not be an option
for you, but there are some folks who switch roles every two‐to‐three
years within the same parent company and find that an effective way
to remain engaged and learning.

On the other hand, if you’re considering leaving due to burnout or ex‐
haustion, it’s sometimes possible to negotiate a paid or unpaid sabbat‐
ical where you can take a few months recharging yourself, often in
conjunction with switching internal roles. This is more common at
larger companies. (In case you were wondering, no, your coworkers
taking parental leave is not “on sabbatical” or “on vacation.”)

Leaving without a job

Speaking of burnout, if you’re particularly burned out, it’s worth con‐
sidering leaving your job without another job lined up. There’s a fairly
simple checklist to determine if this is a good option for you:

• Does your visa support this?
• Are you financially secure for at least a year without working?
• Do you work in a high‐density job market remotely, or are you
flexible on where your next job is?

• Do you interview well?
• Could you articulate a coherent narrative to someone asking you
why you left without a job lined up?

• Are there folks at your previous company who can provide posi‐
tive references?

If all of those are true, I don’t know anyone who regrets taking a sab‐

131

batical. However, bear in mind that it’s only the folks who took six‐
month‐plus sabbaticals who felt reborn by the experience. Folks tak‐
ing shorter stints have appreciated thembut often come back only par‐
tially restored. If you do take a sabbatical, I highly recommend flush‐
ing out your experiences into writing. Even if you don’t share what
you’ve written, it’ll help process the experiences.

Taking the plunge

If you’re almost at the Staff promotion in your current company, there
is absolutely another companyout there thatwill give you the Staff title.
Whether ornot you’ll enjoyworking thereorbe supported after getting
there, that’s a lot harder to predetermine. If your internal reputation
is damaged or if you’ve been repeatedly on the cusp of promotion but
a victim to a moving criteria line, then you should seriously consider
switching roles if the title is important to you. At some point, you have
to hear what your current company is telling you.

Conversely, if you’re happy in your current role outside of the title, con‐
sider if you can be more intentional about pursuing your promotion
rather than leaving. Many folks hit a rut in their promotion path to
Staff‐plus, and using techniques like the promotion packet can help
you get unstuck. If you’ve used all the approaches, taken your self‐
development seriously, and still can’t get there–it’s probably time to
change.

That said, it’s easy to overthink these things. Few folks tell their
decade‐past story of staying at or leaving some job.

132

Finding the right company

There are only a few magic spells to attain a Staff‐plus role: negotiate
for the title while switching roles or find a supportive environment to
“bake in place”while building your internal credibilitywith an empow‐
ered sponsor who’ll advocate for you. The most important reagent in
both spells is picking the right company to perform them at.

The good news is you’re applying to a new company is that while you
might invest weeks of energy into determining if you can get a Staff
role there, you won’t need to invest years. On the other hand, if you’re
looking for a company to join and growwithin, you’re embarking on a
years‐long journey into an unknown organization. This is a daunting
decision to make, and picking the right company for you will have a
considerable impact on whether you attain a Staff‐plus role.

Disproportionately values you

If career velocity is your aim, then join a company that, for whatever
reason, disproportionately values what you’re good at. For example,
Fastly valued Keavy’s API design experience, and Stripe valued
Dmitry’s work on compilers. If there’s a gap matching your particular
shape that’s limiting their success, your impact on the company will
be uniquely high.

Well, run organizations value you for what you’re good at. Less well
run companies value you for your identity. For example, a culture
that views aggression as leadership would indeed promote and center
the most aggressive folks, but to their culture’s and team’s detriment.
Sometimes you’ll find a company that net values you appropriately be‐
cause it values your incidentals without valuing the contributions that
you consider to be valuable; that seems like it’ll work out, but generally
speaking, it’s a recipe for frustration.

133

Meritocrats and Proceduralists

When you’re trying to identify your company to make the Staff
transition to, there are a number of company values to consider in
your decision. One that’s particularly important is understanding if
the company’s leadership fundamentally subscribes to an exception‐
heavy “meritocratic” view of the world or a consistency‐heavy
“proceduralist” view. Few companies exist exclusively at one end of
this continuum, but most slant heavily in one direction.

Of course, folks won’t describe themselves in these terms. The first
stylewould have called themselves ameritocracy a fewyears ago. Now
that the term has fallen out of favor, they’d avoid it, but their core be‐
liefs remain intact. This style is particularly common in Silicon Valley,
is heavily exception driven, and consolidates its efforts feting a small
cadre of treasured individuals. Generally, in these companies, you’re
going to be very successful if you pattern match with whatever they
believe high potential looks like. You’re likely in for a rough ride if you
don’t.

Another style of company you’ll find out there believes that consis‐
tency drives fairness. They’re the sort that work the policy rather
than the exceptions: they design the clock, set it in motion, watch
it tick, and make occasional repairs. These companies tend to be
more structure‐driven and less intuition‐driven, which can create
wider access to opportunity for more folks, but they can also be rigid
bureaucracies who look smugly on while their machinery grinds an
individual down.

Inevitably, both meritocrats and proceduralists view their world‐view
as a moral position and depending on who you are and who the com‐
pany’s leadership is, you’ll have a radically different experience.

Some ways to explore during your interview process to help distin‐
guish these mindsets:

134

https://lethain.com/work-policy-not-exceptions/
https://lethain.com/work-policy-not-exceptions/

• Companieswith rigid compensationbands andwho actually stick
to them tend to be run by Proceduralists. Those that willingly
eschew their bands are Meritocrats.

• Companies that create one‐off roles for individuals to get them
on board tend to be run by Meritocrats. Those that hire to their
planned roles are Proceduralists.

• Companies with ad‐hoc or unstructured interview processes
looking to get your “feel,” particularly for senior roles, tend to
be run by Meritocrats. More structure means Proceduralists.

• Companies that perform ad‐hoc conjurations of new, rubric‐less
interviews tend tobe runbyMeritocrats. Those that evaluate you
rigidly, even if it doesn’t let you shine, tend to be Proceduralists.

Neither meritocratic nor proceduralist companies have inherently
better odds of propelling you into a Staff‐plus role. Rather it’ll depend
on your identity and the identities of folks in a company’s leadership
roles. Depending on how those pieces align, you can estimate the
level of support and friction you’ll encounter pursuing a Staff‐plus
role.

Archetypes

Most companies only hire one or two of the Staff archetypes, even
though they all use the same titles to describe the role they’re hiring
for. If you’re trying to figure out a given company’s preferences, it’s
most effective to reach out to some of their existing Staff‐plus engi‐
neers and get a sense of the work they do. Most companies don’t delib‐
erately think about the sort of Staff engineers they support, so asking
directly rarely works as well as it should.

Sufficiently large companies end up with at least some folks operating
in each of the archetypes, but it takes a long time until that’s the case,
usually after their engineering organization has scaled to thousands of
engineers.

135

Growth

If you’ve exclusively worked at fast‐growing, successful startups, then
it might not cross your mind that there can be a lack of room for
additional folks operating in Staff‐plus engineering roles, but it’s sur‐
prisingly common for slower‐growing companies to simply not have
the work or the budget for more folks in leadership roles. This is also
a common constraint for companies that haven’t reached product‐
market fit–there are limited leadership slots when a company needs
to remain highly aligned while frequently changing–with potential
exceptions for those that happen to be selling a developer‐centric or
technical infrastructure product of some sort.

If you join a fast‐growing company, new Staff opportunities will organ‐
ically open up. In slower‐growing companies, you may need to wait
for someone to vacate their current role before another becomes avail‐
able. That’s not to say that you should necessarily join a fast‐growing
company if you don’t want to–they’re often stressful and run on per‐
petually out‐of‐date processes–just another factor to consider.

Sponsorship

Getting a Staff‐plus offer at a new company requires someone inside
that company who believes in you and is willing to push through a
fair amount of organizational friction to get you the title. Getting pro‐
moted to Staff‐plus requires a manager and management chain who
believe in you and their willingness to push through even more friction
to get you the title. Without an empowered leader within a company
who’s willing to invest their organizational capital in you, you can’t get
a leadership role.

When looking for a company to pursue a Staff‐plus role at, a big part
of the equation is identifying a companywhere you’ll have an effective
sponsor. Interviewing outside of your current company is often effec‐

136

tive at finding you a sponsor: your would‐be hiring manager tends to
have well‐aligned incentives to extend you a Staff offer. Equally im‐
portant, your time investment is high but still relatively low compared
to working at a company for two years to realize you’re never going to
reach your goal.

The easiest sponsors to find are folks who you’ve worked with before.
The flying wedge pattern of one senior leader joining a company
and then bringing on their previous coworkers is a well‐known and
justifiably‐despised pattern that relies on this built‐in referrer‐as‐
sponsor, but it doesn’t have to be toxic if done sparingly.

This is also where having an external presence and network can
greatly aid your search. Folks who’ve seen your presentations, read
your blog posts, or nodded in agreement at your tweets are more
likely to become your proactive sponsor in the interview process and
later during promotion discussions.

Durability

Particularly if you’re earlier in your career and pursuing a promotion
into a Staff role, it’s important to consider the company’s durability:
will the company even exist five years from now when you’re hoping
your work will culminate in a Staff‐plus promotion?

Somewhatmore subtly, you also have to consider the longevity of your
would‐be Staff sponsor. There are some wonderful engineering lead‐
ers creating pockets of equitable access to Staff‐plus roles, but all too
often, these turn into a Values Oasis that can’t sustain itself once the
sponsoring leader departs the company or changes roles.

Derisk durability by ensuring you join companies with business mod‐
els that actually work and work for leaders who are values‐aligned
with their organization’s senior‐most leadership (that way, even if they
leave, you’re still aligned with potential sponsors).

137

https://en.wikipedia.org/wiki/Flying_wedge
https://lethain.com/values-oasis/

Pace

Throughout a forty‐year career, there are times when you’re rested
and looking for a challenging, enveloping role. There are going to be
other timeswhen you’re drained andworn out. Youwill harm yourself
by accepting a role that demandsmore pace from you than you’re able
to presently sustain. When taking on a technical leadership role, it’s
particularly important to make sure that the company’s pace expecta‐
tions alignwithwhat you’re able to provide because you’ll be evaluated
in part on being a role model for the company’s pace.

And everything else, too

Job searches for leadership roles aremuch slower than the typical soft‐
ware search, taking months rather than weeks, and it’s trying to rush
it rarely works out. As you evaluate whether a company might be an
effective place to reach a Staff‐plus role, you also have to assess it on
everything else that you’d look into in a typical process.

Dig into your whisper network for toxic issues and individuals. Make
sure the mission is something you can stay supportive of and engaged
with for years. Search for the folks you’ll be able to learn from during
your work. If you find that these Staff criteria are pulling you towards
a company that you otherwise have concerns about, the good money
is that you’ll regret that decision.

138

https://lethain.com/forty-year-career/

Interviewing for Staff-plus roles

When you decide to interview for a Senior engineer role, you roughly
know what to expect. You’ll refresh your resume, work through Crack‐
ing the Coding Interview, and do some research on the company to pre‐
pare questions. When you go into the interview, you know it’s go‐
ing to be five‐ish interviews composed of a few programming exer‐
cises, something about technical architecture, and some cultural, be‐
havioral, or career questions.

It would be amazing if you could start a Staff‐plus interview process
with similarly clear expectations, but most companies struggle with
their Staff‐plus interview loops. It might be the same exact interview
you’d get for a Senior engineer role. It might be an engineering man‐
ager loop with a programming question added. It might be something
else entirely.

Getting comfortable navigating ambiguity is a core part of the Staff‐
plus role, so a particularly optimistic person might view the state of
Staff‐plus interviewing as a good opportunity to demonstrate your
skills. If you’re less optimistic, youmight find it a bit frustrating, but a
bit of preparation can go a long way in making these interviews more
predictable.

Draw your lines

The engineering leadership phase of your career may last twenty
years, but if you think of that in terms of roles, how you spend that
time will likely come down to four or five pivotal decisions. Each of
those decisions is a scarce resource, and you should allocate them
deliberately. Before jumping into an interview process, spend some
time refining your criteria for the kinds of processes you’re willing to
participate in, as well as reflecting on the right company for you.

There are certain signals you’ll get during an interview loop that the

139

https://thetechresume.com
http://www.crackingthecodinginterview.com
http://www.crackingthecodinginterview.com

company doesn’t quite know how to interview Staff‐plus engineers.
Because most companies have mediocre Staff‐plus interview pro‐
cesses, you shouldn’t automatically opt‐out of poorly run processes,
but you should consider which of those signals represent a line you’re
unwilling to cross.

One line that many folks in Staff‐plus roles draw is they’re unwilling
to practice interview programming. This oftenmeans they are slower
or makemoremistakes in the sort of algorithmic questions that many
companies use to evaluate early career candidates. Folks who don’t
practice take that stance because they’ve decided that a company who
cares about fast programming is likely tomisuse its Staff‐plus engineer.
Is that a line _you _want to draw? Maybe, decide for yourself.

Debug the process

After you’ve drawn your lines, next, you’ll need to figure out the actual
interview process used at the company you’re interviewing with. It
might feel like asking these questions could push the company to re‐
consider your candidacy, but it’s always reasonable to ask the recruit‐
ing team and hiring manager for more details about your interview
process. At the Staff‐plus level, it’s almost a point of concern if you
don’t ask for more details. Companies want you to exceed, and under‐
standing the process is an essential part of preparation.

The three most important things to understand before you start inter‐
viewing are:

1. What are the interview formats, including what are they evaluat‐
ing for?

2. Do any of the interviews require specific preparation?
3. Who are the interviewers?

Once you’ve answered those, then it’s just a matter of preparation.
Take notes about how you want to approach the different kinds of

140

questions. Prepare materials for any presentations interviews. Briefly
research the interviewers to tailor questions to their background.

This is also a moment to debug if you’re in the right process. If your
interview panel is composed primarily of early‐career and mid‐level
engineers, it will rarely generate a Staff‐plus offer; the panel will be
ill‐equipped to evaluate your strengths, and folks are often resistant to
offersmore senior than their own. If there are no deep‐dives into your
previous accomplishments andnopresentationopportunities, it’s sim‐
ilarly hard to demonstrate the expertise to support a Staff‐plus offer.

If it’s the wrong loop, but you’re exceptionally good at whatever the
loop doesmeasure, then you’ll potentially get a Staff‐plus offer anyway.
However, if you’re less confident in those incidental measures, then
raise your concerns politely and constructive, perhaps point them at
resources around designing Staff‐plus interview loops. Don’t allow
momentum to pull you into a process that doesn’t support your goals.

It’s particularly valuable to understand is when leveling happens
within the company’s progress. Some companies advertise roles with
level‐specific titles, which lets you apply directly to the level you think
is appropriate. If you’re hoping for a Senior Engineer role, then apply
for the Staff Engineer job posting. However, many companies use
those as provisional titles and finalize them later; other companies
are quite rigid. The only way to know is to ask.

It may feel very unnatural to take more control over your interview
process, and in theory, youmight miss out on some opportunities this
way, but that’s a good outcome: your goal is to find the best available
leadership opportunity, not the first available opportunity.

Finish well

Even if you skate through the interview process, always negotiate the
details, and remember to finish well. Brief your references on the

141

role’s details. Send follow‐up emails to interviewers. Accept the of‐
fered sell chats and bring thoughtful questions into them. In this case,
the last mile is the easiest as long as you take the time to walk it.

142

Negotiating your offer

Back in 2012, Patrick McKenzie wrote Salary Negotiation which has
since become the defacto guide to negotiating salaries for software
engineers. It’s a great piece and a good primer on how you’d negoti‐
ate any offer, including a Staff‐plus offer: if you haven’t thought about
this topic much before, start there.

For much of your career, the offer you get is generated in a relatively
formulaic way. Maybe they have a compensation calculator, or maybe
they base it off your previous compensation, but it’s the company’s sys‐
tem driving the numbers. However, there is a threshold where offer
negotiations shift, and companies are willing to engage in a bespoke
offer rather than a system‐driven offer, but you’re expected to some‐
how intuit that you’ve crossed the threshold–no one will ever tell you.

This sort of bespoke offer starts with more flexibility around compen‐
sation, and in particularmoreflexibility around the equity component
of your offer. That said, it’s more than just the raw compensation. It’s
also about other aspects of the offer that the company doesn’t gener‐
ally have flexibility around but is willing to make private exceptions
around for senior leaders.

For example:

• Their standard contract might give them three months to exer‐
cise vested equity after leaving, but they might be willing to ex‐
tend a Distinguished Engineer’s exercise window to five years.

• They might not operationally be prepared to support early exer‐
cise for everyone but might be willing to make an exception to
close a Sr Staff Engineer offer.

• They might be willing to offer a deferred compensation plan to
support a tax‐advantaged payout schedule (this is mostly a thing
at public companies).

• Additional vacation days if they’re using metered, as opposed to

143

https://www.kalzumeus.com/2012/01/23/salary-negotiation/

unlimited, vacation.
• Flexibility around work‐from‐home, working hours, or incorpo‐
rating in a state or country they don’t currently support employ‐
ing folks in.

It can be hard to know if a given role at a given company is over the
threshold, and it’s hard to ask the other Staff‐plus folks already at the
company because it’s likely they didn’t negotiate these aspects (per‐
haps because they were promoted from within and never given the
opportunity). As a rule of thumb, if a company has more than twenty
and fewer thanfive hundred employees, it’s pretty unlikely they are go‐
ing to domuch customwork for you unless you’re coming into a quasi‐
executive role–they simply don’t have the operational ability to do so.
However, if a company has thousands of folks but only a dozen at your
level, it’s fairly likely they’re open to negotiating bespoke terms.

It’s important to be strategic about what you negotiate for. If you hold
firm on First Class flights for all your business travel, you might get
it, but it’ll probably also send a message about your priorities that the
company doesn’t like.

Whatever you attempt to negotiate, take the time to frame your request
in a narrative of why it’s important for you. For example, I worked
with one senior candidate who framed their request for an extended
exercise window in the context of having just bought a house and re‐
cently exercising their previous company’s equity after leaving. That’s
a lotmore palatable than just asking formore cash compensation. The
right narrative gets the negotiation done and does it without generat‐
ing a negative signal about your motivations.

144

Stories

It didn’t take me long to realize after publishing my first book that I
wasn’t the sort of person who enjoyed reading reviews of my work. At
best, I felt good about myself for a moment, but often I just felt sad.
During that window when I was still reading reviews, and I read one
commenting that it was too SiliconValley‐centric formost folks to ben‐
efit.

That line stuck with me as I started to brainstorm what eventually be‐
came this book, and I wanted to avoid centering my own experiences
to the exclusion of all others. Even more importantly, it’s clear to me
that my career is built on a particular set of perspectives, luck, and
privilege, and I wanted this book to be a useful guide for folks who
experience the industry differently.

All of that is to say that the best parts of this book rest heavily on the
candid and insightful interviews from industry practitioners, and I’m
grateful to be able to include those interviews in this final, following
chapter. Even if you didn’t get much from the book thus far, I hope
you’ll find something unique in these career stories.

145

Michelle Bu - Payments Products Tech Lead at Stripe

April, 2020 blog, twitter, linkedin

Tell us a little about your current role at Stripe: what’s your title and
generally the sort of work do you and your team do?

I’m the Payments Products Tech Lead at Stripe, working directly
with our Chief Product Officer. I support critical initiatives and work
on mitigating urgent problems across the organization. I typically
spend 80% of my time on one or two large cross‐organizational
design projects. I spend the remaining 20% reviewing and supporting
technical and product design (in particular, API design) across the
organization.

Sample of a “top 3” document I keep evergreen:

146

http://blog.michellebu.com/
https://twitter.com/hazelcough
https://www.linkedin.com/in/michellebu/

Imanage two engineerswho embed into high priority areas. This both
helps me scale my impact and also gives these engineers the chance
to dip into many areas of Stripe. Right now, one is working on the
core payments APIs and the other is focused on improving integration
experience. I’m still evaluated on the IC ladder—the plan is to never
have more than a few reports at a time.

What does a “normal” Staff‐plus Engineer do at your company? Does
your role look that way or does it differ?

Most engineers in Staff‐plus roles at Stripe work on specific teams.
There are some Staff‐plus Engineers who also have a Tech Lead title,
and take on broader projects across a particular product area or
technical domain.

147

There are two kinds of Staff‐plus Engineers at Stripe: those whose
scope is deep and those whose scope is broad.

Broad‐scoped engineers create impact by working on vague, cross‐
organizational projects. They tend to accumulate a lot of context
across many different domains and play a support role in many
projects across the org. This shape of Staff‐plus Engineer is most
common on our product engineering teams.

Deep‐scoped engineers tend to be subject‐matter experts in a specific
domain. They lead ambitious multi‐year projects. This shape of Staff‐
plus Engineer can generally be found on our product infrastructure
and systems teams.

Where do you feel most impactful as a Staff‐plus Engineer?

This has changed over time for me as I’ve moved into my current Pay‐
ment Products Tech Lead role. (For some context, Payments Products
is made up of over 20 teams. We’re responsible for most of our user‐
facing APIs and UI libraries.)

I’ve taken to using the word “energized” over “impactful.” “Impactful”
feels company‐centric, andwhile that’s important, “energized” ismore
inwards‐looking. Finding energizingwork iswhat has keptme at Stripe
for so long, pursuing impactful work.

When I worked directly on a team, I felt most energized when I was
able to directly interact with users, whether it was helping users on
the #stripe IRC channel or designing and shipping an API that users
can integrate seamlessly.

In my current role, I feel energized when someone I’ve sponsored
sends an announcement that they’ve shipped their work, or when I
see that I’ve helped shape or shift an engineering team’s model of an
important topic. It’s these teams, notme, who are doing the hardwork
day‐to‐day of building and supporting their technology. I measuremy

148

impact based on their progress andmore importantly, the directional‐
ity of that progress and the alignment of their work to the company’s
goals.

One concrete example from recentmemory iswhen another staff‐plus
engineer and I categorized the shapes of APIswe commonly see: label‐
ing some as flows, some as engines, some as configs, etc. The intent
of this work was to build up a shared mental model and vocabulary
for categorizing existing APIs and for discussing and designing new
ones. Folks started to organically use these categories after seeing
them once! It’s in these moments that I feel like I’m creating leverage
and scaling my own impact by disseminating useful mental models
and ideas.

I spend time on several of our review forums likeAPI Review, but often
these sorts of forumsworkmore like code review. They happen so late
in the design process that they tend to do a better job of preventing bad
outcomes than of partneringwith teams to steer great outcomes. I feel
more impactful when I’m able to give engineers on product teams the
tools to design great APIs.

Canyou thinkofanythingyou’vedoneasaStaff‐plusEngineer thatyou
weren’t able to do or wouldn’t have done before reaching that title?

I’ve been at Stripe for a long time (since 2013!). While I’ve always had
some amount of clout because ofmy tenure, my role of Payment Prod‐
ucts Tech Lead (and the fact that I report directly to the CPO) has def‐
initely changed how people interact with me. I’m definitely feeling
lonelier at work now (and am actively working on adapting to this new
normal).

One thing that’s taken some getting used to is that now folks expect
me to have an opinion about whatever we’re discussing! That didn’t
happen as often when I was a staff‐level engineer working directly on
a team. I remember being in a meeting shortly after my role change

149

where I was a bit quieter than usual because I was a little tired. I later
heard that the presenters were worried that I hadn’t liked their pro‐
posal because I didn’t say anything. This was the first time that I real‐
ized people looked to me to have an opinion and to support their ideas!
I’ve been careful since then to always stay engaged during meetings
and to give feedback, even if it is just to explicitly say that I haven’t
fully formed any opinions yet.

It’s a bit disorienting that some folks take my opinions more seriously
and are nicer to me than when I wasn’t in such a visible role. Previ‐
ously, there were cases where people weren’t collaborative or would
dismiss my opinions. I think it was a good thing to have experienced
that. I was confident enough (and trusted enough by the organization)
to give them strong feedback on their collaboration so that I could en‐
sure things like this weren’t happening to others like me. I now worry
that I’m losing visibility into where these interactions are happening.

Howdo youmaintain empathy for other engineers’ development expe‐
riences as you spend less time programming?

I’ve only had one year in my new role, so I don’t feel too disconnected
yet. Maybe this is something that will change over time. I was previ‐
ously tech lead for a smaller area. In that role, I wrote a small amount
of software and contributed to some of my teams’ “run rotations,”
where we triaged incoming requests and fixed urgent bugs.

To maintain context in my new role, I spend a good amount of time in
one‐on‐ones with engineers and PMs working directly on execution.
This week alone, I had 12 30‐minute 1‐1s. I also follow every incident
that’s reported at Stripe. (We have a Slack group you can join to be
automatically invited to Slack rooms for each incident!) The hum of
incidents is particularly useful to tune into. By reading through the
details of each incident, I’m able to estimate the distance between the
reality of our systems and the idealized architecture / product that I

150

spend my days thinking about. I want to know the shapes of issues
that engineers are running into, the pits of failure they’re falling into,
and how the developer environment was or wasn’t supporting them
in getting out of those pits. I see myself as an advocate of engineers to
leadership, so it’s important for me to deeply understand our present
reality.

Do you spend time advocating for technology, process or architectural
change?

At this point I spend less time advocating for specific technologies or
programs and more time empowering others to advocate for the tech‐
nologies and programs that they think are important. I also try to be
a source of knowledge and support that people can reach out to for
feedback, especially on cross‐cutting product decisions andonpresen‐
tation of ideas to the rest of the organization.

I do work on projects where I’m explicitly thinking about idealized ar‐
chitecture and interfaces. However, at the end of the day, migration
to any idealized state is going to be done by individual teams, so they
need to feel a sense of ownership and empowerment. I spend a lot of
time having direct conversations with the engineers and PMs who are
actually making day‐to‐day decisions. The ideal outcome is that we’re
able to get directionally aligned, and they’re then able to advocate for
our north star within their teams and make good local decisions.

It’s a lot harder to do this for the project I’m working on right now
because it involves defining the idealized architecture and interfaces
for many, many teams—essentially every team working in payments!
I haven’t yet figured out a scalable way to bring everyone along. Even
writing documents (the most scalable way of distributing informa‐
tion!) is hard because different teams are (by definition) coming at
the interface from a different angle and so very different framings of
the problem and solution will resonate with each team. Our current

151

approach is treating reviews of our documents like user testing:
watching as individuals on teams read the documents, seeing where
their cursor goes, what they’re reacting to, etc. That’s worked pretty
well so far!

Designing the Payment Intents API, a rethinking of our beloved
Charges API for the changing payments space, was a similarly cross‐
cutting project that I worked on previously. It took two years for the
vision to fully land with everyone in the company. Even with that
organizational buy‐in, we still haven’t realized the full potential of its
original idealized design. This is not a bug, though! We focused on
delivering incremental value to users while proving out the design.
I expect any sufficiently‐ambitious design project to continue even
when I am no longer on the team. An important part of making this
work was writing everything down.

We created a canonical document that defines our idealized abstrac‐
tions. Even today, folks working on that team use these abstractions
as a north star:

If two people asked the same question, we immediately added it to a
FAQ that we kept. We took everyone’s feedback and questions very se‐
riously and put the burden of proof on ourselves. Finally, we worked
to be fully transparent in our work, even creating a decision log that
anyone at the company could use to follow our progress. Each entry
in the decision log concisely describes a product or technical decision,

152

https://stripe.com/docs/payments/payment-intents

documents who was involved in the decision, and links to detailed
supporting technical design documents that generally contain the full
problem statement and evaluation of alternatives.

In general, I’ve found that for ambitious design projects, being
extremely transparent but also explicit about whether or not you’re
ready for feedback has landed well with folks who care about the
topic. Here’s some wording you can find at the top of the (public)
notes docs for some projects I’ve led:

153

Is sponsoring other engineers an important aspect of your role?

Yes, and it’s one of my favorite parts of the role! I care a lot about the
people I work with—they’re the main reason I feel energized to go to
work.

A big part of sponsorship for me is creating the space for ICs to do the
impactful work that they care about. I’m lucky that in my current role
I don’t have to spend time actively proving that I’m competent, so I
can spend a good chunk of time in support roles for projects and el‐
evating others. I rarely feel like I have to “claim credit” for work or
have my name explicitly mentioned on a byline for a project I helped
with (though it’s always a nice feeling when it happens). For more
open‐ended projects, it’s sometimes useful for me to lend my name
to the project. For example, I recently kicked off a product quality
mentorship program where I play more of a facilitator role, selecting
mentees, pairing themwithmentors, andoccasionally reviewing their
work. I’m not doing nearly asmuch as thementors in the program are,
but we were able to get this org‐wide program off the ground because
I sponsored it.

Day to day, I find that I can be helpful as a “rubber duck” for folks who
want advice on how to navigate a complex project or resolve a tech‐
nical disagreement. I find this work—helping others make progress
without getting directly involved—particularly rewarding.

Finally, I always keep in mind a list of folks who are amazing at what
they do and advocate for them as visible opportunities that align with
their interests become available. There’s a balance here, though. I’ve
learned that it’s sometimes difficult for folks to say no tome. Recently,
I asked an engineer on a team Iworkwith to send an email about some
good work she had done. She told me after she sent the email that she
originally didn’t want to do it, but she also didn’t want to say no to me.
She then showed me the relevant entry in her “no log”:

154

https://twitter.com/amyngyn/status/1224160724072558594

Stripe is the first company you’ve worked full time at, and you’re still
at Stripe. What was your path to the Staff level?

I joined Stripe right out of college. I actually had a slower growth curve
when I joined than the other engineers in my cohort. My trajectory
over my first four years was slow compared to other ambitious new
college graduates. I think this was partially because I hadn’t been cod‐
ing for that long (I tookmy first programming class in 2011 and joined
Stripe in 2013), and partially because my first large project at Stripe
was a 1.5‐year rewrite project that was ultimately canceled.

When Stripe first introduced levels, I had been at the company for two
andahalf years andwas leveled as anL2, a level thatwe expect a recent
college graduate to reach in 6‐18 months. I was honestly pretty disap‐
pointed, since my peers were already reaching “senior engineer” lev‐
els. At that point I’d already done a lot of impactfulwork, spunupmost
of the new product engineers who joined, and consistently jumped in
to help during incidents. I worked so hard and on so many impactful
things, even outside of my main projects! What else would they want
me to do? Should I not help others out?

In retrospect, L2was 100% fair based on the ladder. I worked hard and
stayed late because I was naturally a bit slower than others in writing
good code due to my lack of experience. I didn’t yet have a good foun‐
dation for software development, mostly because I just didn’t have
enough practice yet! The impactful work I did was valuable, but also
not something that I uniquely could have done. I was, at the time,
solidly a high‐performing L2.

In those early days, I spent a lot more time learning about the prod‐
uct and about the payments domain than I did writing code. I spent

155

a lot of time helping our users (developers) with their integrations on
IRC. I did smaller tasks (bug fixes, small features, bandages to paper
cuts) that weren’t technically challenging but were important to those
users. This sort of work doesn’t always map to growing as an engi‐
neer (though I did fine‐tune my debugging skills—I’m a pretty great
debugger now). I also built up relationships with other teams and
other engineers by being overly helpful on Slack and on tickets and
by helping teams navigate to the best solutions for our users. I helped
spin up most of the new product engineers that joined in my first two
years. Over time, I started having a reputation for caring deeply about
our users and for being a fountain of knowledge about the product.
(“Users first” is still my favorite Stripe operating principle.)

Later on I realized that during that time, while I wasn’t efficientlymap‐
ping towards growing on the technical side of being a software engi‐
neer, I was actually learning critical skills that allowed me to move
very quickly from senior to Staff, and from Staff to my current role (to‐
gether, this only took 3 years!). In fact, I’m pretty sure it’s the relation‐
ships I built during those first few years that made a canceled 1.5‐year
technical project not feel like too much of a setback to my career.

I slowly and deliberately built out my technical foundation when I
worked on the first versions of Stripe Radar and Stripe Elements. I
strongly believe that long as I’m being thoughtful about my technical
gaps, about filling in those gaps for the projects I’m working on, and
about challengingmyselfwith projects that takemeoutside ofmy tech‐
nical comfort zone, I can build up and practice my technical skills or‐
ganically. The softer skills, the connections across the company, the
user focus, understanding the product deeply—these are the skills that
took much longer to learn and ultimately helped me accelerate my
path to Staff after I built my technical foundation.

Did you have a Staff Project?

156

https://stripe.com/radar
https://stripe.com/payments/elements

I’ve worked very broadly on just about every component of Stripe’s
product. Over time, the projects that I’ve worked on have generally
spun off into their own dedicated teams, and two in particular that I
worked onwhile Iwas a senior engineermight qualify as Staff projects:
Stripe Radar and Stripe Elements.

With Radar, we built a brand new product from scratch, making
thoughtful tradeoffs about what to build and what we could safely
descope in order to get something out to users as soon as possible.
When we launched in October 2016, it was one of the smoothest
product launches we’d ever had. It’s since become a very successful
product.

With Stripe Elements, I built out the infrastructure, designed the ini‐
tial Card Elements API from scratch, and shipped to production in un‐
der 3 months. This was only possible because we did extensive dog‐
fooding. While building Elements, I created three tiny e‐commerce
stores with different design frameworks and designs (of varying qual‐
ity) to test the limits of its customization APIs. Since then, dozens of
engineers have successfully developed in the codebase, it’s the home
of the new Stripe Checkout, andmost importantly, we’ve had very few
regrets about its original API design. Breaking API changes are always
to be expected as an API product expands and we learn more about
how developers use them in practice. We did a good job validating our
initial API design to avoid these breaking changes while still shipping
rapidly.

In making sure new engineers could onboard onto a pretty complex
product that involved a ton of IFRAME‐shenanigans, I wrote a lot of
documentation. I found that telling a story worked well for teaching
folks why things needed to be the way they were:

157

https://stripe.com/radar
https://stripe.com/payments/elements

158

Looking back now, the product architecture has generally held up
since launch for both projects. At the time, in addition to implement‐
ing these products, I had to wait for a while after they launched for the
product choices to prove themselves out with our users and for the
technical choices to prove themselves out with engineers internally
as they ramped up.

I think that’s an important criteria for Staff‐plus Engineers in product:

159

not to just build something that ships, but for it to roll out smoothly
and continue to succeed and grow over time with as few regrettable
choices as possible. There will always be corners cut and features de‐
scoped during product development, especially for new products. A
Staff product engineer makes those product and technical choices de‐
liberately, taking on various different user personas to make the best
choice possible and documenting rough edges thoroughly for future
engineers.

Did you have to put together a promotion packet?

When I was promoted to Staff, I was fortunate to have a manager who
was extremely engaged in supporting my promotion. To be honest, at
the time I didn’t really understand how to write my self‐reviews the
right way. I wrote self‐reflective development plans for what I wanted
to learn over the next year instead of documenting the impact and
scope of my work. My manager actually did most of the work by writ‐
ing out my impact in his review.

There were a couple of other things that helped me. First, I worked
with the samemanager formuch of that time. If you changemanagers
then your manager loses context and that pushes the work of creating
continuity onto you. Second, my manager was managing a relatively
small team andwas able to spend a lot of time keeping track of and un‐
derstanding the details of what I was working on. If I’d been reporting
to a manager supporting say, 10+ engineers, I likely would have had
to put a lot more work into my own promotion packet.

What two or three factors were most important for you to reach the
Staff level?

Thinking back, a potentially‐surprising important factor for me was
(and is) my imposter syndrome. It made me extraordinarily open to
feedback; to learning and growing and to taking responsibility for any‐
thing remotely related to my work. It made me proactively seek out

160

feedback on everything from the validity of my comments on PRs to
how I ran a particular meeting. If something was broken (whether it
was technical or organizational), I felt unsettled andwas deeply, intrin‐
sically motivated to go learn about it and to fix it. No part of Stripe’s
product was “not my problem.” This developed into two superpowers
that are perhaps evenmore important to have as a Staff‐plus Engineer
than technical superpowers are:

1. Truly listening to and empathizing with others.
2. A deep care for solving all types of problems.

Of course, imposter syndrome is a double‐edged sword. It oftenmakes
me scared and self‐conscious—early on I constantly felt like I would
get fired for not being fast or effective enough. I grew more secure
about my own strengths over time, but to be frank, this took a lot of
time and positive reinforcement frommymanagers and from leaders
at the company.

Is it harder to reach Staff‐plus roleswhenworking inproduct engineer‐
ing rather than in infrastructure engineering?

I do think that is the case. I also think it’s a bit easier at Stripe, where
the core product is infrastructure. This means there are many oppor‐
tunities within product engineering to work on projects that need to
consider scale, robustness, migration path, and well‐designed inter‐
faces.

It can definitely be tricky to reach Staff if you’re on a team that mostly
builds UI, because UI products are by nature more temporary and al‐
low formore iteration and experimentation. To reach the Staff level of
impact as an engineer on aUI team, you need to be able to create lever‐
age. You could do this by building well‐designed component libraries,
experimentation frameworks, etc.

Another aspect of building leverage as a product engineer is creating
processes and systems to manage “product debt.” Folks often talk

161

about “technical debt,” but equally important is the “product debt”
caused by supporting old versions of your product, and much of
the difficulty of product engineering at scale is related to managing
product debt and product drift (that is, products that need to inter‐
operate with each other moving in different directions) over time. I
believe that a company’s accumulation of product debt does create
Staff‐complexity roles within product engineering at a certain scale.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you?

I haven’t gotten much generically useful advice. There was good
situation‐specific advice that I got along the way, but those pieces of
advice are always tied to the situations at hand.

The most useful general learning for me was becoming comfortable
with uncertainty. Sustained success in senior roles depends on your
ability to adapt and grow as the needs of the organization change.

Advice for someone who wants to become a Staff‐plus Engineer?

Some caveats:

• I think I’ve been particularly lucky with the managers I’ve had.
• My interests have always been aligned with what was most im‐
portant for the company. (At this point it’s a bit unclear to me
if my personal interests (i.e., developer products, mentorship)
were aligned, or if over time I’d aligned myself to what was im‐
portant for the company. I feel like it’s the former, but in either
case, I feel like I’ve always been really interested in my work.)

I’m probably one of the most visible product engineers at the com‐
pany, so engineers will sometimes see what I’m doing and try to pat‐
tern match on that to become a Staff‐plus Engineer. That feels great,
and I’m lucky to be able to be a role model for others like me.

That said,myfirst piece of advice to engineers is that they should avoid

162

patternmatching inways that lead them towardswork theydon’t enjoy.
I’m deeply energized by the work I do, partnering with teams to solve
abstract modeling and design problems. It takes a certain amount of
fortitude to try again and again after many rounds of feedback, and
to be honest, it’s not for everyone. If you’re more focused on hitting
Staff than on setting yourself up to dowork that energizes you, it’s easy
to end up stuck in a role you don’t want. Being a Staff‐plus Engineer,
especially a broad‐scoped Staff‐plus Engineer, is a very different job
than being a Senior Engineer.

Instead, pursue work that you find energizing, even if on paper it
doesn’t seem like it’d get you to a Staff‐plus. A big component of
being successful as a Staff‐plus Engineer is being able to identify and
scope net‐new impactful work and to convince others of its value and
impact. If the work you’re doing energizes you, it’s actually much
easier to achieve this because you’ll enjoy thinking deeply about your
work a lot more!

What about advice for someonewho has just started as a Staff‐plus En‐
gineer?

Your job as a Staff‐plus Engineer is specific to your team and orga‐
nization, and it’s important to avoid taking advice that doesn’t apply
to your situation. For example, when I moved into my current role,
many of the other Staff‐plus Engineers were focused on writing per‐
sonal charters describing what they want to accomplish over the next
1‐2 years. That approach likely works well for deep‐scoped engineers,
but it hasn’t been as helpful for me as a broad‐scoped engineer who
needs to respond quickly to organizational changes and shifts to prod‐
uct strategy.

Did you ever consider engineering management?

I do manage two engineers right now. That said, I don’t do a lot of
the things that a traditional manager would do. I’m not involved in

163

recruiting like a hiring manager would be, and I don’t experience
the same sort of performance management situations that other
managers would because the engineers who are selected for my team
are already high performers.

I care aLOTabout Stripe: when I see somethingout of place I feel antsy
andwant to fix it. In some organizations I think that could have ledme
towards engineering management rather than my current role, and
I’m grateful that management wasn’t the only path that was available
to me. My strengths and interests lie in product engineering and API
design and execution, and I’m able to use these strengths every day in
my role.

What are some resources (books, blogs, people, etc) you’ve learned
from?

I love reading fiction and I learn a lot about the world from great lit‐
erature. I don’t like reading non‐fiction business or technical books
nearly as much. When it comes to learning about topics more directly
relevant to my job, I treasuremy peer relationships. My peers giveme
valuable in‐the‐moment feedback and help me tease out the answers
that were in my head all along.

Stripe also has a program called “Leadership In Practice” which is
taken by all managers and some senior engineers. That program
included a class on adaptive leadershipwhichwas particularly helpful.
I’ve since applied the frameworks I learned to many situations.

I’ve never been a person who looks to a single mentor for advice. In‐
stead, I follow what I used to call a “Frankenstein,” build‐your‐own‐
mentor approach, similar to what Lara Hogan wrote about in her post
on building amanager voltron. Programs thatmatchme upwith a sin‐
glementor have never quite felt natural tome. I tend to be intentional
about the particular topic or area I want to grow in, and will gravitate
towards individuals who excel in that area, even if they’re not my “of‐

164

https://www.amazon.com/dp/B004OC071W/
https://larahogan.me/blog/manager-voltron/

ficial” mentor.

I spendmost of my time on hard, specific questions that don’t have an
easy, generic answer. Figuring out the right approach requires a lot
of situational context that someone outside the situation won’t have
much insight into.

Some non‐fiction that I’ve read recently and enjoyed:

• Draft No. 4, John McPhee: I spend most of my time writing at
work, and experience writer’s block quite a bit. But it’s super
important to power through that, because a good piece of writ‐
ten communication is the most effective means of broadcasting
ideas and scaling yourself.

• Creativity Inc., Ed Catmull: The tone of this book definitely
made me raise my eyebrows, but there’s a LOT to learn here
about how to foster a creative working environment at scale.
This is something I think about a lot as we grow our product
organization and our product engineering function.

• Impro, Keith Johnstone: I see my superpower (especially as the
company grows) as being able to learn and adapt quickly, so I
love reading books about different forms of learning and teach‐
ing. This book is about learning how to act / improvise, and
pushes on conventional metaphors and narratives about educa‐
tion.

165

https://www.amazon.com/dp/B06X18NHC1/
https://www.amazon.com/Creativity-Inc-Overcoming-Unseen-Inspiration-ebook/dp/B00FUZQYBO/
https://www.amazon.com/Impro-Improvisation-Theatre-Keith-Johnstone/dp/0878301178

Ras Kasa Williams - Staff Engineer at Mailchimp

July, 2020 linkedin

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do.

I’m a Staff Engineer at Mailchimp, working in the Data Services engi‐
neering group. Data Services can be seen as the home of data engi‐
neering within the company. Our group builds systems that primarily
support our data science and analyst teams (i.e. product analysts, fi‐
nance analysts, marketing analysts, etc.).

I have been serving as one of the tech leads in this group where I fo‐
cused on building scalable data processing pipelines that power our
internal analytics platform and supporting the advancement of criti‐
cal business intelligence initiatives. I have been performing a signifi‐
cant portion of the Eng Manager responsibilities for the team as well
(although I wasn’t formally the Eng Manager). After almost 2 years in
this role, I am actively transitioning it to another engineer.

What does a “normal” Staff‐plus engineer do at your company? Does
your role look that way or does it differ?

At Mailchimp, once you become a Staff Engineer, you’re a member of
“Engineering Leadership”. Since a formal engineering ladder was im‐
plemented only a couple years ago, the answer to “What does it mean to
be a Staff Engineer?” or “What does it mean to be a member of Engineering
Leadership?” will likely vary.

In my view, it’s about thinking globally. That means partnering with
other members of that cohort to understand the company–wide busi‐
ness / product strategy and distill that into an Engineering–wide tech‐
nical strategy that seeks to enable execution for Product, Marketing,
and our peers across other functions. That means partnering to im‐
prove on processes like hiring, onboarding, cross–team communica‐

166

https://www.linkedin.com/in/raskasawilliams/

tion, and production operations. That means partnering to grow the
entire department’s technical and social skills.

It’s about taking that global thinking and applying it locally. That
means aligning your team’s (technical) initiatives / roadmaps to the
Engineering–wide technical strategy; and being intentional about
when you veer off of that path to serve the needs of your team’s
immediate stakeholders. That means collaborating with your team’s
managers in adopting successful practices in hiring, onboarding,
and production operations from other teams; and sharing practices
from your team that would be beneficial for others. That means
taking context from company–wide business / product strategy and
translating that to how it impacts your team’s immediate projects.
That means being intentional about creating opportunities for your
team’s individual contributors to grow their skills, get visibility, and
access to others across the company.

Of course, I don’t get it right all the time. But it’s been a successful
mode of operation for me.

How do you spend your time day‐to‐day?

As mentioned before, I have been serving as one of the tech leads in
Data Services (and performing a lot of the Eng Manager responsibili‐
ties).

As tech lead, Iwas responsible for defining, and accountable for execu‐
tion of, my team’s technical strategy and approach. I worked to under‐
pin this strategy in its value to our internal customers (or the business)
and effectively communicate that across the company when needed.
A couple of times a year I reflected on what progress was made, and if
anything had changed within the business that required adjustments
to this strategy. I still contributed code regularly—certainly less than
the rest of the engineers on my team; but it was important that I sus‐
tained “hand to keyboard” work to ensure that my technical strategy

167

(and other macro–level decision–making) was informed by the on–
the–ground experiences of the rest of my team. A focus for me was
growing and developing the other engineers on the team as a result
of the technical direction I set. More concretely: I worked to help my
teammates (via mentoring or coaching) understand how to approach
technical decision–making and how it should be underpinned by the
customer / business problem it’s solving and the value it’s providing;
I worked to help them understand how to drive engineering projects
fromproblemstatement to production release / long–termoperations;
I worked to help them understand the proper communication prac‐
tices for different audiences (i.e. engineering peers, vs. engineering
management, vs. non–technical stakeholders, etc.). In aggregate, I
worked to help them get to a level of self–sufficiency where they can
operate and communicate in a way that aligns withmy technical strat‐
egy, direction, and approach without me having to be in the room or
in the conversation.

Our group doesn’t have product managers. But those needs around
things like understanding internal customer needs and stakeholder
management still exist. The recently hired Eng Manager for my team
is accountable for this; but we shared a lot of the responsibility here.
I did a fair amount of chatting with internal customers, answering
quick one–off questions, understanding needs for new pieces of work
(i.e. newdatasets), recommendingpaths forward, setting expectations
around when we’d be able to execute on the new piece of work, etc.

Our group doesn’t have project managers either. But, again, those
needs exist. I believe in empowering each team member to own the
projectmanagement responsibilities for their assignedproject (i.e. sta‐
tus updates to stakeholders, etc.). I did a fair amount of coaching
on project management tactics like proactively communicating risks
/ blockers so that I can help unblock them and how to continuously
deliver incremental value to maintain momentum.

168

I spent a good amount of time building passive internal customer and
business context. I’d occasionally readmerged pull requests for repos
that I didn’tmaintain; I’d read tech specs and proposals that are shared
publicly; I’d occasionally attend various internal presentations from
the data science and analyst teamswhere they presented projects they
completed or ideas they’re exploring. All of these are small tactics, but
they aided in my situational awareness and was one key input into my
team’s quarterly planning activities.

As a tech lead, I was a member of the Eng Tech Lead Cohort. It’s a
formal group of all of the tech leads across the Engineering depart‐
mentmeant to share context, talk through ideas, and help advance the
Engineering–wide technical roadmap. There’s some ad hoc conver‐
sations and work that may come out of this group from time to time.
There’s also a recurring call for all Staff, Senior Staff, and Principal
Engineers meant as a space to surface and discuss problems, assign
owners and actions items when needed, and generally build commu‐
nity with each other. We have a close partnership with Google; they
serve as our cloud provider. Occasionally, I’d spend time talking with
our assigned partner team about challenges we’re running into, plans
we have, proper approaches to solutions, formal training that would
be helpful, etc.

As I’m transitioning out of the tech lead role, there will definitely be a
change in how I spend my time day–to–day. But I’m honestly not sure
what that will look like.

Where do you feel most impactful as a Staff‐plus Engineer?

It’s always a rewarding feeling if I can end the work day and feel like
I’ve helped my peers get unblocked and maintain momentum.

That can mean helping one of my Data Services team members
think through options for solving a complex technical problem and
trade–offs like providing immediate value versus being sustainable

169

long–term. Or helping them think through how to deeply investigate
a new technology and if it can be applicable to solving one of our top
3 problems.

That canmean helping a peer on another team think through their de‐
liverables over the past quarter, whether those deliverables provided
real business / customer value, and how to build a narrative around
that impact to make the case for promotion.

That can mean identifying that a short–term piece of “org work” is
at a standstill because consensus wasn’t achieved, encouraging an in‐
volved peer to take ownership of making a decision (with proper feed‐
back from interested parties), and drive it to completion.

This is a feeling I’ve always felt throughout my career; I enjoy the suc‐
cess of my peers as much as I do my own. But taking on the tech lead
role certainly elevated the importance of doing it. It morphed from
something I just liked doing, to something that I liked and was also
important for the health of the team I was responsible for.

Canyou thinkof anythingyou’vedoneasa Staff‐plus engineer that you
weren’t able to or wouldn’t have done before reaching that title?

Asmentioned before, once you become a Staff Engineer atMailchimp,
you’re a member of Eng Leadership.

It’s noticeable that Staff+ Engineers generally have more agency and
ownership of their time. They encounter less resistance when they
make time for work outside of their primary responsibilities. This has
certainly been my personal experience.

I’ve also had a lot more organic opportunities to coach, mentor, and
generally support more peers outside my team. It was something I
was certainly doing before being promoted to Staff Engineer; but it
noticeably increased. It’s definitely a rewarding part of my work day,
so I welcome it.

170

Often industry peers tend tomake the case that titles don’t matter. But
I disagree 100% with this statement; my personal experiences and ob‐
servations across the companies that I’ve worked at have shown me
otherwise.

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

In some sense, I guess.

I joined Mailchimp as a Senior Engineer. I was immediately added to
a project team (which included an Engineering Director and two Prin‐
cipal Engineers) meant to build out Mailchimp’s first internal, self–
service analytics platform.

Akey aspect of this projectwasbeingeffectiveandexecutingat ahigh
level. For better, or for worse, having two other Principal Engineers
meant expectations for me likely weren’t that high. But I was able
to jump in immediately and start contributing to core aspects of the
project with very little hand–holding from them; by the end, I was one
of the key contributors on the team. I would ultimately be formally in‐
stalled as a tech lead to help continue shepherding that project work
as it was absorbed into my current engineering group, Data Services.

Another key aspect of this project was a lot of visibility across the
company. The project team’s work was categorized as a company–
level initiative. This meant a lot of executive–level visibility; and,
of course, the associated pressures of that. But the overall project
team was able to sustain good momentum throughout and ultimately
succeed in building out an initial iteration of the analytics plat‐
form. Also, my manager and the team’s Principal Engineers were
intentional about creating opportunities for me to present the work
of the project team; I ended up presenting at an Engineering All
Hands, a company–wide All Hands, and co–delivering a tech talk

171

at an Engineering recruiting event. Because of the visibility of the
project and general culture at Mailchimp, I was able to collaborate
with engineers at all levels in the company and engage with analysts
from other departments in a very short time after joining—which is
something most folks take a year or so to have the opportunity to do.

So, it was a combination of doing good work and being really effective
alongsidemore senior engineers; and those senior engineers (and oth‐
ers) being intentional about giving me visibility and access across the
company even though they were the technical leaders on the project.

Important note: The promotion didn’t come until I had also served
some meaningful time as tech lead and delivered a lot of value there.
But this project was definitely the firestarter.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you?

First was from my manager, Marc Hedlund. He told me to write my
performance review in the third person. The idea being that you’re
more likely to praise others, and be less critical, when giving them
a review. It’s pretty simple, but has been super useful to me. Oddly
enough, it’s played a part in helping me understand how to build a
coherent narrative around the work I do and the value it provides to
the business.

Second was from Dan McKinely, one of the senior engineers on the
“Staff project” I talked about. He provided direct feedback on my
strengths and weaknesses when I asked for them. He noted that
my strength around building relationships across the company is an
important skill to have since the people / social aspects of engineering
don’t go away; in fact, they are key to getting anything done.

Third was from Coda Hale, the other senior engineer on the “Staff
project” I talked about. He talked about scaling your impact. Specifi‐
cally:

172

https://twitter.com/marcprecipice
https://mcfunley.com/
https://codahale.com/

first, effectively setting technical direction for other engineers;
second, mentoring them and developing their talent as a conse‐
quence of the work you’re structuring for them.

This advice is core to how I think aboutmy role as tech lead; like, really
being intentional about creating opportunities for the team to extend,
flex their skills, and learn a lot.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

Don’t think you’re going to solve ALL of the Engineering department’s
problems; fromwhat I’ve seen, it’ll get exhausting and you’ll get jaded
pretty quickly. Slowly build up to those things. Hopefully, you were
promoted because youwere already operating at the Staff level; so you
shouldn’t have to do anything dramatically different. Continue to do
the great work that got you to this title. Once you feel like you’re set‐
tling into things, extend from there.

Communication and building narratives are key. Make sure to write
… A LOT. When thinking through problems or ideas, write it down
(even if you don’t intend to share them). Usually when I can’t capture a
problem statement or idea in a coherent, concise paragraph it means
I need to do more research and / or I’ll have a rough time trying to
convince others it’s a worthwhile investment. Also, the written word
allows you to scale your ideas and discussion around them more ef‐
fectively; much easier than scheduling a meeting with every possible
person to pitch the idea.

Try to make your managers’ job easier. Don’t just bring them prob‐
lems; also bring them (multiple if possible) recommendations / sug‐
gestions for solutions to that problem and ask for their feedback. This
way, the manager doesn’t have to do all the work of solving the prob‐
lem for you (they likely have enough on their plates) and they have an
opportunity to draw from their experiences to help you rule in / out

173

your suggestions. Funny enough, it’s probably much easier for some‐
one to provide feedback on why your solution is bad than it is to come
up with a fleshed out solution on their own.

Start thinking intentionally about creating opportunities for other en‐
gineers you work directly with to grow their skills and get access and
visibility to others in the company that they usually wouldn’t.

Build relationships early. It can help in situations where you need to
spend some social / political capital to take a stance on something.
If the first time you engage with someone is when, as an example,
you’re fighting for opposing solutions to a hiring problem, you’re al‐
ready starting from a deficit with that person. To be clear, you should
never look to “people please”. But your working relationship and abil‐
ity to collaborate productively on future endeavors with a specific per‐
son can be significantly easier if a relationship was built up before‐
hand.

Frankly speaking, trying to apply all of this is a lot; and it’s just one per‐
son’s opinion. Treat it like a restaurant menu; choose what resonates
with you and try to apply it. Then, pay it forward by sharing your ex‐
perience with the next person trying to make it to Staff.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

I get asked this regularly.

I do have a goal of being a CTO; but that’s more of a directional thing
to ensure I don’t get complacent about my career progression. In the
context of Mailchimp, getting promoted to Principal Engineer would
satisfy that goal forme. I’ve been able to deliver real, tangible business
value atmy current level; so I think I could continue that and continue
to feel rewarded by sticking with the individual contributor track.

Also, I had been fulfilling a lot of the responsibilities of an Eng Man‐

174

ager for my team (without formally being the Eng Manager). So, a lot
of the things I would have wanted to start doing if I switched to man‐
agement, I was able to put in practice and get that experience. So, I’m
sure that satisfied any itch I had for the time being.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

Verbal communication about technology with various technical and
non–technical audiences is a skill. It’s one that I try to cultivate and
hone everyday. One person that I watch for a visual on how to do it
right is KelseyHightower. Another ismy college professor for a couple
of my Software Engineering courses. He rarely ever came to class; but
when he did I usually learned more about software development than
I have in any other academic setting. They both know how to explain
things well and tailor it to the audience.

There are a couple blogs that I’ve come across that have helped me
hone, and fine tune, how I develop a technical approach and strategy.
Thefirst is ”Delivering on an architecture strategy” fromPeteHodgson that
presents a framework for achieving a sustainable balance between fea‐
ture delivery and foundational architecturalwork. The second is “Step‐
ping Stones notMilestones” from James Cowlingwhich is about delivering
real value with big architectural initiatives.

175

https://twitter.com/kelseyhightower
https://blog.thepete.net/blog/2019/12/09/delivering-on-an-architecture-strategy/
https://medium.com/@jamesacowling/stepping-stones-not-milestones-e6be0073563f
https://medium.com/@jamesacowling/stepping-stones-not-milestones-e6be0073563f

Keavy McMinn - Senior Principal Engineer at Fastly

March, 2020 blog, twitter, linkedin

Tell us a little about your current role: your title, the company you
work at, and generally the sort of work your team does?

I’m a senior principal engineer at Fastly. Fastly is an edge cloud plat‐
form that provides services like a CDN. I work in OCTO, the Office of
theCTO,which is composed of about ten principal or distinguished en‐
gineers who report directly to the CTO. Each member of OCTO tends
to have their own focus, and mine is being the API Lead.

What does a Staff‐plus engineer do at your company? How do you
spend your time?

There are several quite different types of principal and distinguished
engineers in OCTO. There are also principal engineers that work
within engineering teams directly, rather than within OCTO. In the
OCTO group, some work on internet standards or academic research,
some do deep technical research and prototyping, somehelp incubate
a team building something completely new. I’m closely involved with
the broader engineering organization in my API Lead role.

We all work on different things, but we have a common goal of taking
a holistic, long‐term and system‐wide view on things. We also try to
find and help with the sort of things across engineering that might get
overlooked or fall between the cracks. Our CTO supports our work,
but doesn’t identify the projects to work on, that’s up to us.

I’ve never thought about my time in terms of percentages. Some of
my work goes in phases, with more of one thing this week, more of
that the next. A massive amount of my time is spent doing written
work, research, and talking to people. I’ll have regular meetings with
the teams and managers that build APIs. I’ll spend time breaking a
long‐term strategy into little chunks, doing research, and writing a

176

https://keavy.com/
https://twitter.com/keavy
https://www.linkedin.com/in/keavy/
https://www.fastly.com/

proposal on that. Then I’ll have to market that proposal around the
company. Less on writing code lately, but in other phases I’ll build
demos or tooling to support the wider work. That coding work is still
really enjoyable.

Where do you feel most impactful as a Staff‐plus Engineer? What’s
something you’ve done as a Staff‐plus engineer that youwouldn’t have
done earlier in your career?

As a regular engineer, it can be hard to carve out time. You have to
work more within the constraints and cadence of regularly scheduled
projects. As a principal, you have the trust, the time and the space to
try something out.

When you have a title, you don’t have to spend somuch energy putting
your credentials on the table. It helps set the context for others. You’re
more respected from the outset, and that’s been really noticeable. You
also get access to executives, so you get information earlier andmight
have a seat at the table to influence things.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change?

I was hired specifically to set the direction for strategy for theAPI. Part
of that is steering the technical direction and choices we make. I ap‐
proach it as a collaborative exercise. You know I’ll do the grind work
of doing the research, I analyse all the information, present tradeoffs,
and make a recommendation. I’ll take in all the organizational and
engineering group context.

I present what I think is the best case for us, and people can disagree
with that. And, you know, they often do. I’m steering and influencing
more than saying, “I’ve got the authority to just tell you what to do.”
I’ve never seen that style work well.

For controversial decisions, I’ll meet up with representatives from dif‐

177

ferent, relevant groups. I’ll meet with a group of engineers, tell them
what I’m going to recommend, and ask “What do y’all think about that?
What am I missing?” I’ll also meet with the management and product
side, and maybe legal, docs, security or different people depending
on the project. I’ve also done it the opposite direction of just present‐
ing the thing first, and then having calls to get feedback instead of just
waiting for people to leave a comment in the document.

What’s something you’ve advocated for?

One of the things that I’ve been advocating hard for in my current job
is design documents for API changes. So before anybody writes any
code, when the cost of making changes is low, they write down the
user workflows and what would an interface look like that could en‐
able those workflows. Sometimes it turns out that a seemingly simple
thing is really difficult, particularly when the group isn’t used to flex‐
ing those muscles.

My approach to advocacy is to remind ourselves what the pain points
are that everyone felt that led us to trying to make a change. We’re not
trying to be perfect for sake of theory, code beauty, or a lofty concern.
I bring it back to “These are the pain points that everybody said they
felt, and this is an approach that you know ultimately is going to help
with that.”

I help get other people to care about the same things, like I’m going
to start pairing with more engineers on API reviews. While I do the
reviews, I try to help teach others what I’m looking at, and be encour‐
aging through the processes and conversations.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

This hasn’t been as much of a focus for me in my current role. At
GitHub I was conscious that I had privileges from my seniority and
tenure, and sponsored an engineer there. I would give him more and

178

more challenging things to work on, encouraged him to question any‐
thing thatwasunclear or curious tohimaboutmywork, andadvocated
for further responsibility and recognition for him.

How did you build organizational trust?

At Fastly, I was given trust from the beginning. When I joined, I was
hired to come in and work on specific things. I remember asking, “Is
there a time scale for this?” and for their notions about strategy, and
being told explicitly that they wanted me to figure it out and tell them.
So definitely a lot of trust and responsibility.

There are pros and cons of when you build that trust instead of being
hired with it. As you build up trust, you simultaneously build up a lot
of context, which is how it worked for me at GitHub. Although, I find
in my current job that it was actually really useful to come in without
context and be a set of fresh eyes. Thatmakes it easy to questionwhen
folks think, “Oh, well, maybewe’ve just always done it this way.” It can
be liberating not to be tied to the past.

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a “Staff Project,” and if so what
was it?

I’ve never heard it given a name, but I understand the idea. I did
lead and architect that type of project ‐ solving gnarly engineering
problems, with large impact for the company ‐ a few times, but un‐
fortunately they didn’t lead to me being promoted. They did lead to
my career progression though. Those projects gave me the experi‐
ence, knowledge and confidence to position myself differently. Even
to give public conference talks or know that “I’ve done X and could do
X again.”

Were public speaking or public visibility important to reaching your
current level?

179

Yeah, I think it’s been a huge factor for my career development in gen‐
eral. I don’t think it’s necessary, but I think it can definitely be helpful,
it’s been helpful for me. My very first conference talk I was asked to
do ‐ because the organizers thought I had an interesting perspective to
share, coming from an art background. It was terrifying, and initially
I wanted to say no. But my mother persuaded me to say yes. So pub‐
lic speaking was a slightly more accidental than deliberate strategy to
start with.

Mostly, I enjoyed the people I met at conferences. Later the speaker
networks led to job opportunities for me.

How did you first get a Staff or Principal title? What factors con‐
tributed most in you reaching that title?

I was hired at Fastly as a Principal Engineer. So, to be honest, for me
the biggest factor was changing companies. The type of work I was do‐
ing didn’t dramatically change, but changing companies was the thing
that ultimately enabled me to get the title.

There was someone that was a strong advocate for hiring me specif‐
ically, and I’m sure that helped. They weren’t someone I’d directly
worked with before, but they were familiar with my work.

Has working remotely impacted your career trajectory?

Not that I’maware of. I’ve always been a remote employee and I’m sure
it’s been a factor in being able to have serendipitous conversations but
I’ve just been doing it so long. Youmake a deliberate effort to have the
conversations and build relationships. Also, my companies have been
largely distributed. I can imagine it being more of a potential issue if
being remote is the minority, or the company doesn’t fully embrace
being distributed.

Did you get any advice on reaching Staff that was particularly helpful
for you?

180

Not really, I got some bad advice. It’s such a cliche, but the “This
is great. Now you have to prove it again.” There’s some advice that
pushes people more in the sort of hero direction, like saying that you
need to invent something unusual or magical to qualify. There are so
many different directions one can make it. Engineering ladders often
contribute to these beliefs.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

The thing that springs tomind is to find your peers or support network.
Just likemanagement, it gets lonely thehigher up you go and it’s impor‐
tant to find peers that will still challenge you and you can brainstorm
ideaswith. It doesn’t evenmatter if they’re in your similar area ofwork
or even are in different companies.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

I tried it once and didn’t have a good experience. I realized it’s just
not where my passions lie. I have too much respect for engineering
management to do it for anything other than the right reason. The
right reason is to support other people.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

Conferences have been a resource for me, as well as getting to work
with mature, low‐ego, wonderful engineering leaders and engineers.
Chad Fowler, and his book The Passionate Programmer, is at top of
that list. Dave Thomas is another one of those people whose work‐
shops I used to go to when I was first learning Ruby and his book The
Pragmatic Programmer is another great one.

181

https://www.amazon.com/Passionate-Programmer-Remarkable-Development-Pragmatic-ebook/dp/B00AYQNR5U/
https://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
https://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X

Bert Fan - Senior Staff Engineer at Slack

May, 2020 blog, twitter, linkedin

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do.

I’m a Senior Staff Engineer on the Platform team at Slack. I was lucky
enough to join Slack shortly afterwe launched the Slack AppDirectory
so I’ve had the opportunity to help evolve the Slack Platform into what
it is today.

It’s hard to generalize the work that I do but the goal is always the
same: enable developers to build on top of Slack to make our cus‐
tomers’ working lives simpler, more pleasant, and more productive.
Examples of this include building new platform features, improving
API performance, writing documentation, and working with partners,
internal integrators, and third‐party developers to ensure that they
can build impactful software.

What does a “normal” Staff‐plus engineer do at your company? Does
your role look that way or does it differ?

The work that Staff‐plus engineers at Slack do is incredibly varied de‐
pending on which part of the company you’re in, the composition and
size of your team, and what the business needs from you. Staff‐plus
engineers are often the tech leads of projects, which means that they
helpwrite the tech spec, get feedback fromvarious stakeholders, work
closely with design and product to decide what to build, and lead the
technical implementation for the project. They also mentor other en‐
gineers, improve our interview process and engineering culture, de‐
velop engineering processes and tools, and provide technical direc‐
tion for refactors and tech debt. Staff‐plus is all about enabling other
people to do better work ‐ to be a force multiplier.

My role includes all the things that I’ve mentioned but I tend to focus

182

https://bert.org
https://twitter.com/bertrandom
https://www.linkedin.com/in/bertrandom/
http://slack.com/apps

less on specific pieces of technology and more on what the technol‐
ogy is enabling. So I might spend time prototyping concepts that will
almost certainly be thrown away or gathering usage metrics around a
particular user flow to better understandhow to improve the system. I
will often build apps on top of the Slack Platform to keepmyself honest
about what the developer experience is actually like and actively try to
build on other people’s platforms to see what works and what doesn’t.
A lot less of the code that I write makes it into production than other
engineers at the company and I’m completely fine with that.

Canyou thinkof anythingyou’vedoneasa Staff‐plus engineer that you
weren’t able to or wouldn’t have done before reaching that title?

I’ve done a lot of experimentationwith various product ideas in the last
year, some of which have evolved into actual features of our Platform.
Part of the reason I was given the opportunity to do that is that I’ve
established trust through other projects that I’ve successfully shipped,
but having a Staff‐plus title seems to bestow a little more flexibility in
what I choose to work on.

For better or worse, I’m also in a lot of strategy and planning meet‐
ings I was never in before. If you’ve ever wanted to know how the
sausage was made from a leadership angle, maybe consider if you ac‐
tually want to know how the sausage is made.

How do you keep in touch with how things really work as you spend
less time on hands‐on development?

The best way I’ve found is to have regular 1:1s with engineers across
the company and spend a lot of time listening. You can learn a lot
about the current state of engineering if you take the time to develop
relationships where engineers feel like they can be honest with you.
As a Staff‐plus engineer, you have no real influence over how much
money someone makes or their next promotion, so engineers can be
more candid with you if you make yourself accessible to them.

183

What two or three factors were most important in you reaching Staff?
How have the companies you joined, your location, or your education
impacted your path?

I come from a fairly privileged background ‐ I graduated from college
with a computer science degree and no debt or student loans and part
of what that bought me was the flexibility to leave a job without wor‐
rying how I was going to make rent or if I was going to find a new one.
And I leveraged that flexibility into becoming pickier andmore strate‐
gic about the places that I wanted to work.

I acknowledge that most people don’t have that option but for me I
thought it was important to work on things that I felt were meaning‐
ful ‐ things that I personally used that I thought were having a positive
impact on the world. And I believe those choices have paid dividends
because companies like that attract like‐minded folks who will go on
to other companies that hopefully are aligned in the sameway. This is
not ameritocracy and yourprofessional network is important. I’ve got‐
ten jobs because I’ve applied on the company’s website like everybody
else but I’ve also gotten jobs because I’ve awkwardly e‐mailed a man‐
ager there that I haven’t talked to in years but that I respect and know
that they respect me as an engineer. We work in an industry where
there are a lot of options of how to spend your time and if you’re lucky
enough to be in a position where you have the flexibility and privilege
to choose, you’re doing yourself a disservice by not regularly evaluat‐
ing what you work on.

Maybe at one point you’ll become the kind of engineer that when you
announce on Twitter that you’re starting a new job, people who you’ve
worked with before will create a calendar reminder for four years in
the future when you’re fully vested so they they have the highest like‐
lihood of poaching you, but until then, you’re going to have to write
awkward e‐mails to people that you would like to work with again.

184

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you?

The best advice I’ve heard is that often reaching Staff is a combination
of luck, timing, and work. Here’s a path of events that I’ve observed
and personally experienced:

1. Develop a relationship with your manager where they implicitly
trust you and you implicitly trust them. Be honest and direct
with them about what you want. Developing this trust will re‐
quire you successfully delivering on the things they ask you to
work on.

2. Because yourmanager trusts you, when they hear about projects
that will have a significant impact for the company, they will ad‐
vocate for you to lead those projects. Alternatively, you’ll have
to find or create a project yourself and advocate for it to happen.
This is much harder but still plausible.

3. Deliver the project successfully.
4. The project has a significant impact on the company.
5. Because you successfully delivered a project that had a signifi‐

cant impact on the company, it’s easy to advocate for your pro‐
motion to Staff, which your manager is happy to do.

Hopefully you can see where luck and timing can affect this simple
plan ‐ what if you don’t get along with your manager? What if your
manager leaves the company or gets promoted? What if you’re in an
area of a company that gets no interesting projects? What if the project
is doomed to fail? What if the project succeeds but has no impact?

These are all possible and there’s no generic piece of advice that I can
give to overcome any of them except that sometimes you’re never go‐
ing to get promoted and you should probably be honest with yourself
and identify when you’re in that situation. In that case, sometimes the
only way to get promoted would be to leave the company and do some‐

185

thing else. You may boomerang back into the company at a higher
level than you left at later in your career, but much like a failed rela‐
tionship that you revisit, do you still want to be there or is there too
much baggage to ever make it work?

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

It’s kind of a running joke in engineering but a lot of people get into
this profession because they don’t like talking to people but to be ef‐
fective at your job as a Staff Engineer, you’re likely going to spend a
lot of your time talking to people. I think you can progress early in
your career by focusing on just writing better and better code but at
some point you should probably shift to focusing on working better
with other people. Trusting other people and giving them the freedom
to make technical decisions (even ones that you disagree with!), un‐
derstanding other people’s motivations, learning to give difficult feed‐
back, knowing when to pick your battles ‐ these are all useful skills to
have.

If you haven’t already, try to become the engineer that people want to
work with. There are a handful of engineers at every company who, if
you ever left your job, you would try to circumvent a non‐solicitation
agreement to work with again. Become one of those engineers for
other people and it’ll unlock a lot of doors for you in your career.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

Early in my career, I once told my manager I was concerned that I
would have to go into management at some point and they said some‐
thing like, “Don’t worry about that! At this company we have two dif‐
ferent tracks, the management track and the IC (individual contribu‐
tor) track, and there are equivalent roles in the IC track for the highest
management positions, so you’ll never have to switch to management

186

in order tomove up in the company.” While technically true, the omis‐
sion that seems obvious to me now is that at a lot of companies, the
management track is a lot less vague than the engineering track.

The higher up you climb in the engineering ladder, the less examples
you’ll have of what to emulate and the examples seemmore andmore
unattainable. When you start to dig into it, you may realize that some‐
onehad gotten the titlewhen their companywas acquired or theywere
the author of a programming language or framework or they unlocked
tens of millions of dollars in revenue for the company.

A lot of my colleagues have gone into management for various rea‐
sons and I suspect one of those reasons may be the more obvious,
reliable progression that I’ve described. But I believe strongly that
that shouldn’t be your primary motivating factor. If you have open
calendars, take a look at your manager’s schedule and the number of
1:1s they conduct a week. Is that a schedule that you would enjoy?
The desire to write code isn’t black and white since there are tech lead
manager positions where you write code and Staff‐plus engineer roles
where you never write a line of production code and spend the major‐
ity of your day in Google Docs or Dropbox Paper. But in my career,
I’ve never had to lay someone off or deny them a promotion or write
performance reviews ‐ I know which side of the coin I’d rather be on.

187

Katie Sylor-Miller - Frontend Architect at Etsy

August, 2020 website, linkedin, twitter

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do.

I work at Etsy, which is the world’s leading onlinemarketplace for sell‐
ers of handmade goods. We let sellers put their items up for sale and
sell them to folks all around the world. We really focus on providing
peoplewith unique, special or handmade goods that are an alternative
to kind of the facelessness of big box stores.

I’m currently on the Frontend Systems team, which is a product in‐
frastructure team that’s responsible for our frontend architecture ‐ in‐
cluding our PHP view rendering framework, although I’m not super
actively participating in the work that the team is doing right now. For
the last several months I’ve been focusing on web performance ‐ func‐
tioning in an advisory capacity for all things performance ‐ improving
our monitoring and reporting systems, identifying areas for improve‐
ment, and being available to product teams for helpwith performance
related questions.

Web Performance is something that I think many companies either
ignore or don’t focus on. When I started at Etsy, we had a great per‐
formance culture thanks to folks like Lara Hogan, but due to organiza‐
tional changes a few years ago, we no longer had a web performance
team, and I think that as an organization, we rested on our laurels
and deprioritized web performance. Now, we’re bringing it back to
the forefront because there have been a lot of changes in the indus‐
try around how “good” performance is defined and measured, partic‐
ularly for SEO. Google is really pushing for web performance being a
criteria that companies focus on as part of their search ranking. So it’s
very much a top of mind area, especially for retailers.

What does a “normal” Staff‐plus engineer do at your company? Does

188

https://sylormiller.com/
https://www.linkedin.com/in/ksylor/
https://twitter.com/ksylor

your role look that way or does it differ?

The interesting thing to me about how we think about the role of a
“staff engineer” is that we take two different ways that a person can
be senior and we put all of those people into one bucket called staff
engineer. But really, there are two different buckets.

Someone can become really senior in their role by being an expert
in a particular subject area, by really taking on the role of tech lead,
where they are driving their team or org’s technical approach and
roadmap. Then there’s this other way to be a senior engineer, which
are the folks who broaden their scope of work and their focus such
that they’re thinking about problems that are cross cutting, they’re
driving the creation of systems and practices that operate across
multiple teams. That second bucket is what I think of as an architect.
It’s not that you aren’t a subject matter expert, but it’s just that the
scope of influence that you have is greater than operating as a tech
lead for a particular team.

At Etsywe have a few levels of seniority: Senior Engineer I and II, then
Staff I and II, then Senior Staff which is considered equivalent to a Di‐
rector level role. I’m technically a Staff Engineer II, and that’s how I
think of myself, but my specific role is as the frontend architect. That
means instead of being responsible for just what my team is doing,
I’m responsible for looking at what all of Etsy is doing in the frontend
space. What does the future look like? What are the problemsweneed
to solve? How are we going to get there? I think about all that, and ad‐
vocate for the technical approaches that will get us there at the com‐
pany level.

In your role as an architect, do you spend much time doing software
development?

Yeah, it’s funny. I’m a frontend architect, but by far themain thing I’ve
beenwriting lately is SQL, because I’m doing a lot of data analysis. I’ve

189

been looking at our performancemetrics to figure out where the areas
for improvement are, and what would be the most impactful issues to
fix to improveperformance andbusinessmetrics. Iwillwrite little bits
of JS or PHP here and there, but it’s mostly to help unblock teams or to
run small performance‐related experiments, or if there is something
important that needs to be done but other folks don’t have time for.

I’ve definitely found that I’m moving slower, and it’s taking me longer
to actually find the dedicated focus time to write code as my calendar
fills upwithmeetings. So I don’t think youwantme towritemuch code
anymore! I’mmuchmore focused on identifying areas for opportunity
and then trying to sell that aswork thatmy teamor other teams should
be doing.

How do you spend your time day‐to‐day?

I would say 50% meetings, and the rest of the time it varies pretty
widely fromday to day. Sometimes I spend the other 50%writing docs,
sometimes I’m in SQL doing a lot of data analysis, sometimes I’m in
slack talking to people across multiple teams and roles. At times my
meeting load will spike a bit as projects come into my lap where I’m
reaching out to other teams to learn more about what they’re work‐
ing on, or trying to influence them to make changes. It varies pretty
widely.

I’ve found that folks in these roles often struggle to quantify theirwork,
have you found any useful ways to measure your impact?

I’m glad to hear that because it is something that I really, really strug‐
gle with. I always have a bunch of different projects and discussions
happening at any given time, and I have a bad tendency to get caught
up in the newest thing or let my focus wander, so I have to be really
thoughtful and cognizant about how I organizemywork andmy notes.
I’m always looking at everything that I could potentially be doing and
picking what is themost impactful or themost important thing forme

190

to do that day, and that can be really hard.

I didn’t realize, until I moved into the architect role, howmuch I relied
on sprints and JIRA boards and the ritual of completing a ticket and
moving it to the “done” column as a way to check in with myself and
know that I am accomplishing the things that I need to accomplish.
Now that I don’t have that kind of team context to help me organize
my day, I’ve had to rely much more on my own to‐do lists and I’m still
working to improve my systems for that.

One thing that has definitely been helpful ismaking sure that I’m keep‐
ing track of all of the different tasks I complete every day ‐ logging
meetings, emails, slack discussions, etc. Then, when I have my of‐
ficial quarterly goals check‐in with my manager, I review all of my
notes and realize, wow, I helped engineers fix performance issues on
six different experiments, or I influenced this team to take a better di‐
rection with their new feature, or I gave that engineer feedback that
helped them. These are all little things that in the moment don’t feel
like much, but taken together show real impact.

Where do you feel most impactful as a Staff‐plus Engineer?

What I absolutely love to do the most is to identify a new or unique
problem that hasn’t been tackled before, come up with a wild idea to
solve the problem, and thenmy brilliant coworkers take that idea and
really run with it to build something awesome. It starts with taking
in a ton of input from the work folks are doing ‐ seeing that this team
has a problem doing x, and another team has a problem doing y. Then
you mix all that input up with your experience and what’s happening
in the industry as a whole and let it sit in your brain for a while, until
finally it all clicks and you realize that the deeper cause underlying
both problems is z, so you come up with a plan to fix that problem
which is really hard to fix.

An example of this process frombefore Imoved into the Architect role

191

was when my team owned our Design System components. Making
changes or fixing issues with our shared components was really diffi‐
cult becausewe didn’t have a single source of truth for themarkup and
the templates for each component. Rather than everyone in the com‐
pany reusing the same template file, folks were copying and pasting
the HTML into a bunch of different places. So when we had to make
changes to a component, it was hard to find all the places to update
because the pieces of the component were spread out and managed
in different places ‐ sometimes in JavaScript, sometimes in Mustache,
sometimes in PHP logic.

So I had this wild idea: what if we extended our custom PHP frame‐
work to enable reusable template blocks inmustache that represented
all of our components, and we were able to easily compose them to‐
gether the way that you would in a React application. I went out and
made a proof of concept and wrote up a proposal for the project and
brought that to the team. Then the team really took the ball and ran
with it, they built the infrastructure to support this component system
and it turned out far better andmore robust than anything I could have
done on my own.

The part that I really enjoyed was identifying the problem and think‐
ing creatively about how we can solve it, then shopping the proposal
around and getting other people engaged with the work to execute it.

Can people doing frontend work create leverage for a company simi‐
larly to folks in developer productivity or infrastructure roles?

Yes, most definitely. I personally only know a handful of other
Frontend‐specific staff engineers, and I think that frontend as a
skillset is not valued in the industry as much as I think that it should
be. I’m very lucky that I got my foot in the door at a place like Etsy,
which tends to hire “full stack” engineers, by having computer sci‐
ence fundamentals in my background ‐ I went to school for Computer

192

Science, and I have experience working in and understanding the
whole stack. But really, my passion and my focus has always been the
frontend because it’s what’s in front of your users. I’d love to see more
companies value the frontend, because I believe we bring valuable
skills and a unique way of thinking to the table.

As far as becoming a staff engineer, I think that the qualities of a good
Staff Engineer transcend what stack you’re working in. Ultimately,
staff engineers need to be able to think about engineering decisions
as a series of tradeoffs, and articulating those tradeoffs is a skill that
you can have from any perspective within the stack.

I also think that Staff Engineers should have a broad understanding of
all of the adjacent fields of work to their own specialty. For me, work‐
ing in the frontend, I put a lot of time and effort into understanding
marketing, business goals, user experience, visual design, the view
and business logic layers on the server, howwe ship code the browser,
how browsers take all that code and turn it into a website, and then
how users interact with it. Having expertise in all of these different
areas makes it easier for me to see the broader impact of my technical
decisions and understand those tradeoffs better.

Having empathy for your users, in particular, is an important skill for
all types of engineers to develop, and I think it can be undervalued in
many infrastructure or developer support orgs that don’t understand
that yes, they actually do have users! I work in Frontend Infrastruc‐
ture, and we really try to see ourselves as product engineers ‐ it’s just
that the products we’re building are systems for other engineers to use.
So we have customers. We have users. When we think about the API
for the systems that we build, we’re designing our APIs for users, and
we need to understand our users ‐ aka product engineers ‐ to do that
well.

So I personally think that frontend‐leaning folksmake great Staff Engi‐

193

neers, because they’re so used to constantly thinking about users and
how users are going to interact with what they build. User empathy is
a superpower that frontend people bring to the table.

Howdo youmaintain empathy and awareness of the realities of devel‐
oping at your company when you do less development yourself?

Networking, networking, networking, networking. One‐on‐ones are
particularly important because I’m a full‐time remote. Obviously,
everyone’s remote right now, but as a remote on a not‐completely‐
distributed team, you have to be really cognizant of who you’re talking
to, and make sure that you have connections across multiple teams
and multiple groups to leverage those networks.

At Etsy, we are really lucky that we have a few different Employee Re‐
source Groups for folks to connect across the company. I’m fairly ac‐
tive in theERG formarginalized gender identities in tech (MAGIC), and
it’s great because there are folks who are part of that community who
work in every single department in engineering. The same is truewith
the community of remote employees. I make time to mentor more ju‐
nior folks, have regular 1:1’s, and participate in slack discussions to
foster and grow these connections, because it helps so much to have
a finger on the pulse of what’s happening broadly in the org. I also
try to make sure that I’m talking to engineers throughout product en‐
gineering in particular, because product engineers are our customer
base.

Something I’m working on getting better about is connecting a lot
more with managers. For a long time I’ve had really good networks
inside the Individual Contributor track and I’ve been working a lot in
the last fewmonths on broadening the reach ofmy network to include
more engineeringmanagers. A lot of times the work that I do requires
“influence without authority”, I’m not making the decisions myself,
but trying to influence the decisions that others are making, and a

194

lot of times, managers are the ones who make the final decisions on
things.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

I was very lucky to work with Lara Hogan for a few years at Etsy and
she’s talked a ton about sponsorship and as a woman in tech I’ve ben‐
efited from and seen the value of sponsorship myself. I definitely put
a lot of time and energy into that.

About a year and a half ago, my colleague Andy Yaco‐Mink, another
Staff Engineer, and I noticed there wasn’t really a goodmethod of com‐
munication for product teams to share what they are working on with
each other, or to connect with teams working on product infrastruc‐
ture. To try and fix that, we proposed and started up a monthly meet‐
ing that we call the Product Engineering Confab. It’s an open forum
for folks to bring up questions, share their work, celebrate wins, and
for us folks in infra to share what we’re working on.

Something that I don’t think we fully anticipated is that it’s also been a
really great way to create opportunities for sponsorship . Everymonth
Andy and I have to figure out what folks are doing that would be inter‐
esting to sharemore broadly. What are experiments that have run that
have gotten interesting results? Who’s out there doing cool stuff that
should be shared? Then we’ll reach out to engineers on those teams
and say, “You should come and talk about what you’ve been working
on at the confab!” It’s really easy. It’s five minutes. It’s super informal,
but it’s a good way to get public speaking experience.

Since then, we’ve had a couple of folks who’ve come and spoken at the
meeting, and then went on to speak at company all‐hands meetings
or local meetups. At least one person ended up giving an expanded
version of their talk at a big conference. We’ve also heard from folks
that giving a talk at the confab was something they used as evidence

195

of leadership in their promotion packet, which is an amazing feeling!

You first got the title Staff Engineer at your current company. What
was the process of getting promoted to Staff?

I was hired as a Senior Engineer because at the timewe didn’t hire into
the Staff title, although we’ve since changed that policy. I was working
in the industry for almost ten years before I joined Etsy, but largely at
smaller and lesser known companies. I’d been serving as a frontend
tech lead for more than five years before I came to Etsy. Because of
that, I was already extremely comfortable in the role of being a men‐
tor and a leader. I’d already spent a lot of time working closely with
management, product and design, as well as figuring out roadmaps
and execution. Altogether, I felt like I had the tech lead role down pat.

But, when I came to Etsy the scopewasmuch bigger thanwhat I’d seen
previously. The engineering departmentwasmanymagnitudes bigger
than any engineering department I’d worked at before. I had a lot to
learn about operating at a really big scale and how that’s very different
thanwhenyou’re at a smaller company. I learned tobemore cognizant
of looking at data: I had to go out and teach myself basic statistics to
understand the experimentation framework.

From the beginning, though, I was always looking around for places
we could improve. I came in and said, “Oh hey, we’re not doing this
thing. We should be doing this thing.” For example, I noticed that
folks had been writing the design system JavaScript components any
old way, so I said “Let’s come upwith a framework and a standard boil‐
erplate for that.” It was such a small thing and it felt obvious to me,
but it was a big improvement in our practices. I think a lot of what
gets someone to Staff is noticing problems and acting on solving them
proactively, instead of letting them go.

Altogether, I had been at Etsy for a little less than two years when the
promotion to Staff came. My manager at the time was brand new and

196

didn’t know my track record, so we worked really closely and collabo‐
ratively on putting togethermy packet. I’ve heard experiences on both
ends of the spectrumofmanager‐driven versus IC‐driven, and I’mglad
that I ended up being a big part of the promotion process. Especially
being a remote, I think that unless you’re proactive a lot of your work
can go unnoticed because it happens over Slack, in pull requests or
documents, and not out in the open where managers tend to operate.
You’re always going to be your best advocate, but that’s evenmore true
as a remote. You have to put a lot of effort into making sure your ac‐
complishments are out there and they’re known.

What two or three factors were most important in you reaching Staff?
How have the companies you joined, your location, or your education
impacted your path?

I’ve discussed a few things in this vein already: creativity, proactive‐
ness, empathy, etc. Something I haven’t talked about enough is com‐
munication and transparency. A big part of being promoted to Staff
is making sure that your work is visible, that people know your name
and you have a good reputation.

I’m lucky to be on a team that builds frontend infrastructure because
we naturally write a lot of emails to everyone in engineering about the
work we do, so we get a lot of visibility. But a bigger part of being
in infrastructure is customer service ‐ helping folks who come into
your Slack channel with questions or issues to be solved. I worked
in the service industry for several years before going back to school
to finish my degree in computer science, and I always try to model
the lessons I learned about customer service from that experience in
every interaction I have with folks at work: be available, be humble,
and focus on really hearing and understanding people’s needs. When
you truly care about helping our colleagues it shows.

Doyou think some companies are particularly good at growing Staff

197

engineers?

To be perfectly honest, I don’t really know how Staff engineering
works at companies other than Etsy, so I am totally biased! I think
Etsy is good at growing Staff Engineers because we have a strong
internal culture that values technical excellence combined with a
culture of blamelessness and a desire to do good in the larger world. I
think that leads to really smart and kind people working at Etsy, and
that combination of intelligence and humbleness makes folks great
staff engineers. This kind of environment feeds on itself, creating
good role models and people who want to emulate those role models
in order to get promoted. So I think that on the whole, we have a great
cohort of folks who work or have worked at Etsy and model good
practices for Staff Engineers.

I think it’s important to remember, though, that there are lots of
smaller and less‐well‐known companies with amazing people who do
Staff engineering type work, but aren’t called staff engineers, they’re
acknowledged as technical‐track leaders in other ways. In many
companies people who are strong technical leads become managers,
and might not even have the idea of something like a Staff engineer
role. It’s easy in a big name company to get stuck on this title of Staff
as the end‐all be‐all, but remember that there are as many different
ways of growing your career.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you?

Oneof the best pieces of advice that someone gaveme, and that Imake
sure to pass on to other staff engineers, is that there’s amisconception
that you become a Staff Engineer and then you’ll be in control of the
work you do, and everyone will listen to you and do what you want
them to do. That’s absolutely the opposite of what happens! You have
this really tangible goal of getting a promotion for so long, and then

198

you become a Staff Engineer, and all of a sudden, everything is vague
and ambiguous. You transition from solving somewhat clear‐cut prob‐
lems, to being responsible for finding the right problems, and then
figuring out how to convince people that it’s important to solve them.
You are going to be challenged in a completely different way than you
have been in your career thus far.

What’s your advice to people pursuing a Staff role?

I was nominated for the Staff Engineer promotion twice before I got
promoted; the third time was the charm. I think what finally pushed
it forward for me was that I had a good sponsor in my Director. So
my advice is to make sure that you develop your network and start
meeting with your Director or your VP, because those are the people
who are in the roommaking the decision about whether you’re getting
promoted or not. It’s not your peers and it’s not really your manager,
it’s this other group of people, so you want them to know your name
and your work. During that promotion discussion, you want them to
think, “Oh, she sent that engineering‐wide email about this project.”
or “I see him in Slack answering people’s questions all the time.” or
“They spoke at that conference, didn’t they?”

When folks, particularly women and non‐binary people, come to me
for advice, I think they expectme to talk about how to grow as a techni‐
cal leader, and are surprised when I say “You’ve probably already got
the technical chops, what you need to do is work on your reputation at
the company.” For better or for worse, you can’t get to Staff without a
good reputation. I think people want or expect it to be a meritocracy,
when it’s really not. There are so many factors that go into getting a
Staff‐level role.

Advice for navigating uncertainty and ambiguity that comes with
more senior roles?

It’s important to develop a lot of self‐knowledge to see when you’re

199

pursuing something because it’s what you want and not because it’s
going to be beneficial for the organization. That can be really hard to
do. You have to be ready to kill your darlings, pivot, and try something
new. If an approach you’re taking doesn’t work, don’t try to force it.

I also really loveDanNa’s talk about pushing through friction, because
that’s something you experience constantly when you’re growing as
a technical leader. I think about this concept of “influence without
authority” a lot, because when you’re a Staff Engineer then your job
is to figure out what the team or organization needs to do, align the
organization around that goal, and figure out how to get people to do
that when you have no authority over staffing or final decisionmaking.
It takes a lot of tenacity and you have to flex a whole bunch of quote‐
unquote non technical skills to push things forward.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

A lot of names that I’ve already said, especially Lara Hogan, Dan Na. I
just love everything that Julia Evans does and I am really lucky that I
got to collaborate with her on a project. Ryn Daniels who used to work
at Etsy blogs a lot on career progression. Tanya Reilly is a big inspi‐
ration to me as another badass working Mom who is also a respected
technical leader. In the frontend space, Nicole Sullivan, Jen Simmons,
and EthanMarcotteare huge inspirations tome to name just a few. I re‐
ally enjoyed readingCamille Fournier’s TheManager’s Path. I’ve never
done themanagement track so it was a bit of a black box and anything
that gives you insight into theworld ofmanagement is helpful because
as a Staff Engineer you’re almost like amanager without the people as‐
pect.

200

https://blog.danielna.com/talks/pushing-through-friction/
https://larahogan.me/
https://blog.danielna.com/
https://jvns.ca/
https://www.ryn.works/
https://noidea.dog/
http://www.stubbornella.org/content/
https://jensimmons.com/
https://ethanmarcotte.com/
https://www.amazon.com/dp/B06XP3GJ7F/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

Ritu Vincent - Staff Engineer at Dropbox

March, 2020 linkedin

Tell us a little about your current role: your title, the company you
work at, and generally the sort of work your team does?

I’m a StaffEngineer at Dropbox. I actuallywas a StaffEngineer at Drop‐
box, left to join a different startup, and then recently came back to
Dropbox just a few months ago. I came back because a really inter‐
esting opportunity opened up within Dropbox to launch an internal
incubator. We’re working to foster innovation within the company.
Dropbox has become a strong brand in the file sync space, but there’s
beginning to be a lot of competition there now, so we need to domore
and branch out into new products. The incubator works directly with
the CEO, and is a very small team.

I’d been at Dropbox long enough that I built really close bonds with a
lot of people here, so when folks pitchedme this role it sounded really
fun. I’d also been a manager for a couple of years and was getting a
little itchy to code again. Putting those together led me back to Drop‐
box.

There are two parts to the incubator.

The first is a more classic incubator where engineers across the com‐
pany can pitch ideas and get funding to join the program, and try to
showproduct‐market fit or other forms of progress to continue getting
funded every few months. The goal is for successful projects to grad‐
uate into their own lines of business, although we’re still early.

The second part is engineers who are permanently part of the incu‐
bator, and are always generating ideas from within the incubator and
operating with a lot of autonomy. I’m one of the two engineers on that
permanent “scouting” team, and we’re planning on growing over the
next year. It’s very different from anything I’ve done before, which is

201

https://www.linkedin.com/in/rituvincent/

why I wanted to sign up for it. It’s a huge paradigm shift for me. Hon‐
estly, the first few months have been a combination of really fun and
really frustrating because it’s harder tomeasure obvious impact when
your primary goal is to very quickly try out a ton of new ideas, many
of which will not go anywhere. I’ve had to learn to think of impact in
longer timescales ‐ not in terms of what I’m shipping today, but what
I could influence the company to ship in the future,

What does a Staff‐plus engineer do at your company?

I’d say there are two different profiles of Staff Engineer at Dropbox.
One is a tech lead who does a lot of coordination, designs work for
their team, and spends time driving projects. The other is more of a
specialist.

The tech lead was definitely my profile when I initially became Staff
where I took a team of about eight engineers and drove an eighteen
month project. That project had a lot of dependencies, a lot of gnarly
parts. I had to control the communication around the project, as well
as figure out how to allocate pieces of the project to the team in a way
that both helped them grow and got the project done.

The specialist is deeply specialized in a particular area, for example
Guido van Rossum, the creator of Python. Specialists would take on
really complex projects and execute it themselves, often projects that
no one else could take on effectively. Therewere fewer specialists than
tech leads.

Were the specialists predominantly external hires?

There were some specialists that came in from industry, like Guido
and a lot of very experienced folks on the ML team, but a lot of spe‐
cialists ended up being homegrown. That might be related to rolling
out titles relatively late at Dropbox, which gave folks longer to develop
deep context in our technology.

202

https://en.wikipedia.org/wiki/Guido_van_Rossum

How do you spend your time day‐to‐day?

In my current role within the incubator I’m spending all day prototyp‐
ing, but in my previous tech lead role I did a lot of different things.

I was coding, but I wasn’t coding very much, maybe 20% of my time.
I was the tech lead for the desktop client area, and spent a lot of time
coordinating and providing guidance on projects. I also spent a lot
of time partnering with recruiting, which was something that I did
because I was interested in it, not because it was required.

For example, I worked on designing speciality interview loops, mod‐
erating debriefs and candidate screening. I also did a lot of work on di‐
versity initiatives. That’s one of the reasons that I’ve tried engineering
management multiple times during my career, because I enjoy partic‐
ipating in organizational growth.

Where do you feel most impactful as a Staff‐plus Engineer?

One of the things that I’m really proud of having worked on was a big
revamp of our engineering levels. Back in 2017, I was one of the few
individual contributors selected to work on an engineer levels refresh,
most everyone else was a director or manager. I’m proud because the
new ladder impacted every person at Dropbox working in Engineer‐
ing, Product and Design.

It was also just really interesting to think deeply about how company
growth changed roles and responsibilities. We were starting to bring
in people from a lot of different backgrounds, and we wanted to be
able to reward everyone in a healthyway. That was very different from
my normal day‐to‐day responsibilities and pushed me outside of my
comfort zone pretty significantly.

I’m also proud ofmy StaffProject, whichwas very technically complex.
That project also gave me a chance to help a lot of people on the team
grow. Years later, I’ve had engineers who left the company email me

203

and say howmuchmore confident they are or howmuch they learned
because of that project.

It was also on that project where my manager helped me understand
thatmyfirst impulse as a tech lead didn’t scale. Initially I was thinking,
“I’ll break it into twenty pieces, assign out eighteen pieces, and keep
the two hardest for myself,” and my manager pushed me to delegate
the hard pieces to the team to stretch and develop them.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change?

As a tech lead I spent a lot of time advocating for change. I would jump
into a lot of different architecture and technical discussions, even in
areas that weren’t directly within my area of expertise, because peo‐
ple seemed to trust my intuition. I know tons of engineers who have
amazing technical intuition and don’t have the Staff Engineer title, but
the title does formalize having that intuition.

I do prefer for the team that’s going to own a project to make the final
decisions about it. In cases where I have a very clear “right decision”
in my head, I’ll try to lead the team towards that decision rather than
going in and saying “this is the right decision.”

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

I definitely think of myself as a sponsor. Execution is one of the most
rewarding parts of my job–I love building stuff–but I’ve always loved
helping people grow. I feel really proud when I see somebody who
I informally mentored or helped on a project go on to do something
great.

As a Staff Engineer, and especially as a woman who is a Staff Engineer,
I feel like a lot of people lookup tome. There seem tobe a lotmore role
models on themanager career path, so I try tomakebeing a rolemodel

204

part of my responsibilities, instead of just keepingmy head down cod‐
ing. I mean, I could just keepmy head down coding and that would be
great, but I want to help other people, especially people with imposter
syndrome.

I often get people coming tome and saying, “I don’t knowhow tomake
the next step.” or “I don’t know how to become a staff engineer, so I’m
going to go be amanager instead.” I want to try to help themfigure out
their path. As a Staff Engineer, I think being visible and available for
people to ask these sorts of questions is an important part of the role.

What’s somethingyou’vedoneasaStaff‐plus engineer that youweren’t
able to or wouldn’t have done earlier in your career?

There wasn’t anything I wasn’t able to do without the title, but the title
did give me confidence. In addition to the title, the other thing that
gave me confidence was realizing that everyone else is also struggling
with imposter syndrome. The latter I learned in a pivotal conversation
with someone who I thought was the most confident engineer I’d ever
worked with, and when I talked with him about it he said, “I question
every single thing I do. I go home and agonize over what I said earlier
that day, and whether it was silly.”

It was really that conversation in combination with the title that
pushed me to believe in myself as a Staff Engineer. Together they
gave me the confidence to ask for the harder projects, or to ask my
manager to give me more projects to work on.

What was your proces of getting promoted to Staff Engineer at Drop‐
box?

They rolled out external titles a while after I joined Dropbox. In the
first review season with titles, they gave the Staff title to a very small
number of engineers. Theywere really still calibrating the titles at that
point. It was in the second review season that I got my Staff title.

205

By the second season, I’d been aTechLead for awhile andmymanager
and I both felt that I had clearly been executing at the Staff level. We
did go over the new career level definitions to identify any gaps before
the review cycle, but overall it went pretty smoothly.

What two or three factors were most important in you reaching Staff?

One of the big factors formewas definitely visibility. Part of that came
from doing somany things outside of normal engineering responsibil‐
ities.

For example, I helped recruiting with running the intern program one
summer. During the program I worked with a ton of intern mentors
across different teams, and since Dropbox tended to have very large
intern classes, that ended up meaning that I gained visibility across
prettymuch the entire company. The hiringwork helped too. If you’re
moderating dozens of hiring debriefs every month, and driving hir‐
ing and calibration conversations, then you’ll get to interact with ev‐
eryone in engineering. I also helped with onboarding, giving a core
engineering presentation to incoming new hires.

Having a sponsor was also definitely important. My manager and I
had a fantastic relationship, and I also had a great relationship with
my skip‐level manager. I think that played a big part as well.

Was thatwork,which some companieswould call “gluework,” directly
valued?

This work was highly valued by leadership at Dropbox. Leadership
and many of the very senior engineers were heavily involved in these
efforts, especially recruiting, and it was not considered glue work.
That being said, it would not have gottenme to Staff on its own. It was
a question of finding a good balance between having cultural impact
and having something technically strong to showcase.

There is a popular idea that becoming a Staff Engineer requires com‐

206

pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

There isn’t an explicit expectation, nor is it listed anywhere as a formal
requirement, but it is understood that you’ll complete a Staff Project to
get promoted. I can’t think of any Staff promotion that didn’t include
a really strong project, typically a multi‐person project where the en‐
gineer was the Tech Lead.

I definitely had a Staff Project. Back in the day, Dropbox was initially a
consumer product that people downloaded and installed on their ma‐
chines. When we launched Dropbox for Business there was a request
for both your personal andwork Dropbox accounts to work simultane‐
ously, including being able to switch across them without needing to
log out and log back in.

The initial implementationwaswritten under immense time pressure,
and it ranmultiple Dropbox processes. One for your personal account
and another for business. My Staff project was to make it so a single
Dropbox process could run with multiple users logged in. The hard
part was that the project stretched from the kernel all the way to the
user interface. I had to understand every single layer of the Dropbox
system.

Initially we thought it would take six months, and it ended up tak‐
ing eighteen months. It took up most of the Desktop Client team’s re‐
sources for quite a while.

Would you share a piece of advice on reaching Staff that was particu‐
larly helpful for you?

Early in my career, my instincts were to ask for projects that I felt I
would be able to execute well on instead of projects with more ambi‐
guity that would pushme to grow. The advice I got was to pushmyself
out of what I was comfortable with, and to ask for the hard projects
on the team. To reach Staff Engineer, you have to know and do more

207

than what you currently know. It’s important to always push beyond
what you’re doing and not be scared of asking for things you think are
too hard for you.

This is tied into imposter syndrome, where you might not want to try
anything until you’re absolutely sure you’ll excel at it. But you have to
get comfortable with the fact that you might crash and burn. That’s
okay, you’ve got to try it.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

People frequently come tome and ask, “What should I do next to reach
Staff?” One of the things that I tell them is to be super open and hon‐
est with your manager about what you want from your career. A mis‐
take I made early on in my one‐on‐ones was telling my manager what
I thought they wanted to hear, instead of what I actually felt.

They’d ask me if I was interested in a piece of work, and I’d wonder
why they were asking, did they _want _me to take the work? So I’d say
I was interested even if I wasn’t. Or they’d ask me how a project was
going, and it might be going horribly, but I’d tell them it was going fine
to avoid disappointing them, instead of saying I needed help.

Somewhere along the way I realized that your manager is really on
your team. They’re looking for a way tomake you grow, be productive,
be happy and become the best engineer you can be. The way to have
an effective relationship with your manager, including having them
sponsor you, is to be super honest and open with them.

This became particularly obvious tomewhen I became amanagermy‐
self, because Iwanted everyone onmy team tobecomea StaffEngineer
and to get promoted. I wanted to find reasons to promote them, and
worked with them on that.

Did you ever consider engineeringmanagement, and if so howdid you

208

decide to pursue the staff engineer path?

I do pendulum a decent amount, because I’m interested in so many
things on both sides of the career ladder. I’m interested in growing
people, I really like working with recruiting, I’m one of those engi‐
neers that actually enjoy interviewing, I like understandinghow teams
grow. But I also really like writing code, and after I spend some time
managing I want to get back into the code and hack around a little bit.

Once I started mentoring and managing I definitely found myself
thinking about career growth very differently. The pendulum has
helped me see a lot of different perspectives. As a manager you
have very explicit responsibilities for things like headcount and
performance reviews. Staff engineer responsibilities are really fuzzy
and differ across companies. That ambiguity around Staff roles leads
many folks to make the lateral switch to management who would
have been happier staying as an engineer. That’s why it’s so valuable
to get more information on the Staff role out there for people to read.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

I read a lot, but my reading is very recreational. What’s been most
impactful for me is having a lot of people who I think of as mentors,
usually friends, former managers and folks that I’ve worked with. I
have a decent number of recurringmonthly lunches, coffee chats and
dinnerswith peoplewho’veworkedwithme in the past, knowme, and
I trust. It’s those conversations about career challenges and growth
that have gotten me to where I am in my career.

209

https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/

Rick Boone - Strategic Advisor to Uber’s VP of Infrastructure

April, 2020 linkedin

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do.

I’m the Strategic Advisor to Uber’s Vice President of Infrastructure,
which means I’m part of the Infrastructure leadership team along
with the engineering directors and org‐wideProgram Managers.
Infrastructure Engineering at Uber is about 700 people across six
sub‐organizations like Metal which handles our data centers and
servers, Storage, Developer Platform and so on. I work with the VP on
things like technical strategy, cultural strategy and special projects.

Strategic Advisor is a wide ranging role, for example I might work on:

• assessing our technology needs over the next two years
• helping prioritize innovation in the roadmap for the next six
months

• digging into important areas without a clear owner and helping
streamline the ongoing related projects

• learning how the engineers are feeling before or after a big orga‐
nizational change

• talking to two teams who need to agree on something but are
very far apart and seem like they’re having communication is‐
sues, figuring out how to help them find an effective path for‐
ward

It’s just a really, really broad role that’s a mix of engineering, culture,
psychology, organizational design and strategy. There are two ways
that I describe it, both from pop culture. The first is like being the
Handof theKing inGame of Thrones, and that’s the best analogue I have
for it. The second is LeoMcGarry fromTheWestWing, who always said,
“I serve at the pleasure of the President.” In my role, I say that I serve
at the pleasure of the Vice President of Infrastructure.

210

https://www.linkedin.com/in/kineticrick/
https://awoiaf.westeros.org/index.php/Hand_of_the_King
https://westwing.fandom.com/wiki/Leo_McGarry

Although right now it’s just me, previously there were two of us in
the Strategic Advisor to VP Infrastructure role, and we would split the
work based on our natural affinity to the projects. She often focused
more on projects related to managers and leadership while I focused
more on IC’s and engineering projects ‐ though we still managed to do
things in both areas

The Strategic Advisor role is a bit unorthodox; it was created by
Matthew Mengerink a little while after he started in the VP of Infras‐
tructure role. To my knowledge, our org, and the office of our CTO,
are the only orgs which have a role of this type. Matthew created
the role because of the value of having full context from within the
engineering teams themselves , and hewanted to create that feedback
loop to inform his decision making.

It’s a particularly valuable role in Uber’s Infrastructure organization
because it’s a really, really broad organization, and I help serve as a
synthesized view across all of it.

How does this role compare to a TPM role?

This is an interesting question, because I was just thinking about the
distinction between Chief of Staff and my own role the other day.
Within the Infrastructure Leadership Team, we have the strategic
advisor and program managers, and in the past, we’ve also had
someone who filled a Chief‐of‐Staff role.

Theway I see it, the programmanagers are an organization‐scoped op‐
erational role. They’re working at a high‐level, ensuring that the ma‐
jor programs and areas within Infra are progressing along and eval‐
uated at a regular cadence, operationalizing efforts + initiatives, etc.
The Chief of Staff role was one which ensured that the entire leader‐
ship machine was working well together ‐ that all the people, groups,
messaging, etc, involved in running and leading Infra were operating
effectively.

211

https://eng.uber.com/core-infra-2018/

My strategic advisor role is more about taking broad domain knowl‐
edge, both technical and cultural, getting into the details of the prob‐
lems on a personal and organizational level, and then mixing in engi‐
neering acumen. From that I’ll synthesize a set of recommendations
or insight which I deliver to either the organizational leader or the
entire leadership team. Day‐to‐day, the vast majority of my work is
done directly with the org director and with the PM’s ‐ delivering rec‐
ommendations to the director of the org, and then, with his input and
approval, working with the PM’s to turn them into a reality.

How do you think about the importance of remaining aligned with
your sponsor?

It’s funny, because that alignment is key ‐ almost a necessity ‐ for the
role. Matthew and I are very aligned on our principles, values, world
views, emphasis on emotional intelligence, approach to execution,
and philosophies. On so many things we’re lined up, such that it’s
almost a symbiotic relationship.

Alignment with the sponsor is really critical to be effective, but it’s
more than just the dispassionate connection between Strategic Advi‐
sor and Vice President. It’s also about the connection between Rick
and Matthew as people, and making sure that’s a good fit.

In my role we’ll often go weeks without being in the same room to‐
gether, but I still have to operate as if I’m his direct proxy. So I go
into a room and think, “What would Matthew do here? What is the
question he would want to ask? What guidance has he given on this
problem?” Because I can’t always run back to him for clarification, it’s
essential to develop and maintain a deep understanding of his world
view. That’s essential for me to retain the very deep trust required to
be his representative and effectively carry out his strategy and vision.
People need to be confident that I’ll always give the same answer that
Matthew would give if he were there.

212

It also means that I have to truly understand his goals, intent, values
and principles, tomake sure that I’m ready to stakemy reputation and
credibility on pushing them forward. Often, part of my role involves
advocating for or translating his vision and/or implementation to en‐
gineers, sometimes when supplemental context isn’t always known.
When I do this, I have to make sure that I not only understand the
logic and value of what he’s doing, but that I also believe in it myself ‐
otherwise, advocacy becomes hard, not to mention disingenuous.

This is something I really struggled with a lot when I started in the
role. Matthew would constantly tell me, “You’re my representative;
you should feel free to push on and perform things using my name
and role .” That was difficult for me because I’ve never been in a role
like that before. Previously I’ve always operated using my own name
and reputation, and now I was operating under the aegis of the Vice
President and everything which that carried . Over time I’ve learned
how to be deliberate with using that hammer, since you don’t want to
overuse it.

I’ve also learned that I have to let folks know which hat I’m wearing
sometimes. I love to mentor people, but sometimes folks aren’t sure
if they’re getting the strategic advisor working for the benefit of the
organization and company or the mentor, working for the benefit of
that person and their career; I try to let them know which role I’m
currently in within a particular conversation. If I meet with someone
I’mmentoring, theymightwant to get advice about changing teams, or
even leaving the organization or the company, and they want to know
which perspective I’m giving advice from.

What does a “normal” Staff‐plus engineer do at your company? Does
your role look that way or does it differ?

I think the biggest difference is that other senior‐plus engineers work
primarily on technical work. They are leaders, so they do get into the

213

realm of emotional intelligence, communication, collaboration, con‐
flict resolution, evangelism and so on, but still 80% of their daily ef‐
forts are driven by technical concerns.

Whereas with me, there might be weeks where I’m focused on a
project around group psychology or organizational design. Technical
concerns are not always the pure focus that drive my day to day ‐
though they are always there, if even just in the background.

How do you stay aware of reality on the ground now that you’re devel‐
oping less?

When Iwas an engineer I could do this passively, because you’re in the
code, trying to push commits, dealing with the friction of provision‐
ing and operating services, etc. That approach doesn’t work anymore,
since I’m not touching code very much; so now, gaining that data and
awareness requires an active process.

One thing I’ve done is continue to sit next to my old team so I can hear
themwork. Maybe they’ll complain about a service’s stability, or a gap
in our tooling, and it’s helpful to keep hearing that.

I also constantly ask folks questions about their developer experience.
I keep a list of people in my head of folks who are good at surfacing
problems and giving feedback on approaches, and I reach out to them
frequently. Sometimes these reach outs are more structured, literally
a survey for input, and other times it’ll just be a quick message check‐
ing in.

I also tell folks to send me non‐critical path work that doesn’t have
a strict timeline, and I try to use that as an opportunity to stay fresh
in writing actual code. I have to be careful not to get in the critical
path of our actual product though, because I know I won’t have much
bandwidth to maintain the code going forward.

How have you sponsored other engineers? Is sponsoring other engi‐

214

neers an important aspect of your role?

One of the things that’s special about this specific role is that it’s es‐
sentially a built‐in mentorship with the Vice President. When I got
started, he asked me, “What do you want to do in five years? What are
you aiming for?” At the time, I really didn’t have clear answers to those
questions. For a long time my perspective has been that being able to
write code, in our current time, puts you in one of the best positions
in the history of humanity, in terms of job security and trajectory, and
that seemed like enough for me.

As I spent time thinking about my goals, what I really came away with
was that I love being a visible reference for other engineers, especially
other minority engineers, and helping people here at Uber or earlier
in their career. I especially enjoy helping people who are just getting
into the industry, and might still be a little intimidated by it. That’s a
huge part of what drives me, and this role has helped me realize and
admit that to myself. Before I didn’t accept that as a valid purpose, but
I realized that if it’s what you love, if it’s what you’re passionate about,
then you have to go for it.

Another reason mentorship is important to me because throughout
my life and career, I’ve had six people that I consider key mentors.
Each of them, at various times, have provided massive impact and in‐
fluence upon my life ‐ I would not be anything close to who I am with‐
out their past and continued guidance. And I’m both extremely grate‐
ful for themand also constantly aware of howmuch they’ve guidedme.
So, I always recognize the power of a mentor and want to make sure I
can provide that for others. And sometimes, mentors don’t even know
how their words or actions change you, the ripple effect they can have,
even years later. So, I always try to make myself available for others
as a mentor, because you never know when you can have that type of
life‐changing impact on someone, or how. It might just be the right
word, the right perspective, the right push from you, at just the right

215

time for them.

I’ll always tell people, “Seriously, if you need me, just come ask for
help.” This is one of themost exciting parts of what I do, and there are
a few different ways I try to make myself available.

One is that I give an Engucation (what happens when you blend engi‐
neering and education into a single word) class every month to most
new hires in engineering. That class is called “Lessons + Questions”
and it’s literally just a place where they can askme anything they want
about Uber ‐ technical, cultural, whatever ‐ and I’m as candid as pos‐
sible. At the end of that, I let people know my email and that they’re
welcome to reach out. A good number reach out to me after that and I
give themadvice on their careers, working at Uber, orwhatever. Other
times I’ll have people who just run intome while I’m around the office
and ask for advice.

Iwant to be visible as aBlack engineer, showing others thatwe arehere
and this is doable. Once I realized thiswas an importantmotivation for
me, I knew that I had to get better at public speaking, because that’s
such an importantway to scalemyself as a rolemodel. Public speaking
used to terrify me. I used to hate public speaking. But because it’s
such a key way to reach large numbers of people, I told myself I had
to learn to like it, and since then I’ve learned to be an effective public
speaker and have actually fallen in love with it. It’s now one of the
most exciting things I do ‐ it’s like a roller coaster; everytime I do it,
I get nervous, but it’s a thrilling, fun type of nervousness and I get a
huge rush while I’m doing it.

Do you think about building your external brand?

I have a couple of friends that spend time building their external
brand, one of whom is getting back into it right now. He realized that
his work at Uber was so intensive that he’d pushed external work to
the wayside.

216

I’m abitmore passive about it. When I’m involvedwith something that
gets written up publicly or I give a public talk, then I’ll post a link on
LinkedIn, but I don’t write my own content at all. I think about doing
it, and I’m interested in doing it, but I don’t. I tend to think through
speaking, so writing this way requires a lot of preparation to organize
my thoughts, and I’ve not spent much time doing it externally so far.

You first got the title strategic advisor at your current company. Were
you hired as a strategic advisor? If not, whatwas the process of getting
promoted to that role?

My path was completely unorthodox. It wasn’t planned, and there re‐
ally isn’t a reproducible pathway to it, more of a fortunate series of
events. Previously Rob Punkunus was in the same role, and when he
decided to leave he was asked by Matthew to suggest potential succes‐
sors. He suggested me and Kate, and both of us ended up serving in
the Strategic Advisor role.

Matthew and I had already had several positive interactions before
that, where we’d started to identify that we had similar views and val‐
ues. For example, at one point we had a rash of nasty comments sub‐
mitted anonymously to ourQuestions&Answersmeeting, and it really
bothered me to see our culture heading that direction. I stood up and
spoke at one of the Q&As asking folks to find a more constructive way
to surface their concerns, and I think that resonated with Matthew.

When he first suggested that I take the role, I had a ton of imposter
syndrome about it. I tried to get him to rescind the offer, thinking it
wouldn’t be a good fit, but ultimately I did accept and have been in the
role since.

What two or three factors were most important in you becoming a
strategic advisor? How have the companies you joined, your location,
or your education impacted your path?

In addition to Rob’s recommendation, the most important factor was

217

https://www.linkedin.com/in/rob-punkunus-3791273/

doing visible work that aligned with Matthew’s values. One project I
worked on was joining the working group to understand and improve
SRE’s culture back in 2017. The working group was already planned
before Susan Fowler’s blog post went out, and our first meeting was
coincidentally three days after she posted it. I really think the culture
working group did some great work, work which myself and the other
groupmembers are extremely proud of and over eighteen months we
really moved the culture of a hundred person organization in a mean‐
ingful way.

Additionally, I’ve always just been personally fascinated with things
in the realm of both culture and human psychology + behavior. In
my career, at the companies I’ve worked at, culture + group psychol‐
ogy has often been the hidden x‐factor that turns organizations from
good to great. I’d already been satisfyingmy own personal curiosity in
the area with books and papers on things like behavioral economics,
behavioral science, etc, so that natural interest has helped nudge me
towards where I’m at now.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you?

Throughoutmy career people have always toldme that I’mmuchmore
impactful and have more potential than I realized. I never listened to
that, and forme, aswell asmany other engineers, especially engineers
that are minorities, we spend a lot of time doubting ourselves. It’s so
easy to only see the bad parts. Wemight not recognize whenwe’re in a
meeting and speak passionately about something, and that people are
really listening to us. It really helped to have people keep telling me
that I didn’t realize the impact I was having, that my viewpoints were
not only valid, but actually influential in the organization.

Another thing that’s helped is having mentors. Specifically I like men‐
tors who are constructively antagonistic. What I mean by that is that

218

https://www.susanjfowler.com/blog/2017/2/19/reflecting-on-one-very-strange-year-at-uber

they throw me into things that utterly terrify me but they’re certain
I’m ready for. They’ve helped push me way beyond what I thought
was possible for me. These have generally been managers who I’ve
worked with, but where we’ve been able to mutually learn from each
other.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

This goes back to how I got where I am based on having a broad set of
interests in organizational psychology, culture, mentorship and so on,
in addition to the technology. I’ve never been a pure engineer that’s
just deep in the code 24/7. I’ve never been that person, and I had to
make my peace with that.

Forme it’s been important to followmy passions. Recently that’s been
around mentorship, but it’s also been around other things like ma‐
chine learning, which has always been a hobby of mine. I love how
machines can generate insights that mimic how people think ‐ it’s the
perfect marriage of my interests in technology + psychology.

So I have these passions that I stoke, and then when opportunities to
align those passions with something the company needs arise, I take
them. For example, my previous team at Uberwas generating insights
into fleet utilization for capacity planning purposes, and that a great
chance to pull together my interest in machine learning and site relia‐
bility.

Small companies give you the chance to do many different things, but
at a certain size companies also give you the unique opportunity to spe‐
cialize in your passions, and that for me has allowed me to maintain
both impact and passion despite never being the person to sit beyond
the keyboard and knock out code all day.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

219

https://www.youtube.com/watch?v=9ool1BQybaE
https://www.youtube.com/watch?v=9ool1BQybaE

It’s something that I think about sometimes, even now it’s something
I’m thinking about. It’s on my list of possibilities, and throughout my
career folks have asked, “Have you considered moving into manage‐
ment?”

What I want to focus on right now is becoming effective as a high‐level,
big‐picture leader. Eventually I’d like to develop the people manage‐
ment skill set too, maybe somewhere in themedium future. The thing
that appeals to me is that human behavior excites me to no end, and
people management is a great opportunity to spend time on that.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

You know, for the first two‐thirds of my career I used to love reading
as much technical content as I could. I would be on YCombinator or
my RSS feed all day reading about distributed systems, reliability, etc.
These days I’m much more into reading about behavioral economics,
behavioral science, human psychology, organizational strategy and so
on. Some people I really enjoy in those realms are Daniel Kahneman,
Tim Harford, Dan Ariely. There are also some amazing podcasts out
there ‐ Freakonomics, Choice‐ology, Hidden Brain.

Also, last year I started compiling a reading list of books about the hu‐
man brain and behavior which I share with anyone who’s also inter‐
ested in the topic(s).

I do still keep up with r/linux and r/programming on Reddit, which
have replaced RSS feeds for me in discovering new things to read.

220

https://en.wikipedia.org/wiki/Daniel_Kahneman
https://en.wikipedia.org/wiki/Tim_Harford
https://en.wikipedia.org/wiki/Dan_Ariely
https://freakonomics.com/archive/
https://www.schwab.com/resource-center/insights/podcast
https://www.npr.org/podcasts/510308/hidden-brain
https://docs.google.com/document/d/1WIqIYuSGfyoU_ZO-xZMDXfaaUmnG2tmnkHiGZQ7pvqg/edit?usp=sharing
https://docs.google.com/document/d/1WIqIYuSGfyoU_ZO-xZMDXfaaUmnG2tmnkHiGZQ7pvqg/edit?usp=sharing
https://www.reddit.com/r/linux/
https://www.reddit.com/r/programming/

Nelson Elhage - Formerly Staff Engineer at Stripe

April, 2020 twitter, blog

Tell us a little about your current role: your title, the company you
work at, and generally the sort of work your team does?

I wasmost recently at Stripe. They do online payment processing, and
it’s a pretty fast growing startup of about two thousand people. Engi‐
neering was around six hundred. When I left, I technically didn’t have
a title. If I had stayed another two months, I would have been a Staff
Engineer, because they finally rolled out titles after some years of in‐
ternal debate.

The team I worked onmost recently was called Payment Architecture,
which was a team of three or four fairly senior engineers. Payments
are the core of Stripe’s product, andwe looked after thepayments code‐
base. Wewere particularly focused on the financial infrastructure lay‐
ers of the codebase, and building the data model and abstractions we
needed to support all of Stripe’s current and aspirational product lines.

We looked at how code structure fits into organizational structure, in‐
cluding how to structure code within a rapidly growing organization
that was adding teams, products, countries, and payments methods.
It was particularly important that our architecture support spreading
ownership across a number of offices and timezones.

We drove a lot of initiatives around code quality and code architecture,
and did some implementation and rewrite projects. For each of those
initiatives, we developedmetrics and goals, got teams to take on those
goals, and then gave teams tools to help themmigrate to the new stan‐
dards.

Was the “Payments Architecture” team a permanent team or more of
a project team?

A little bit of both. It wasn’t a super tactical teamwith a narrow project

221

https://twitter.com/nelhage
https://blog.nelhage.com/

or scope to its mandate. But it was also unlikely to last forever as a
team. We were taking an experimental approach to evolving our ar‐
chitecture, with the goal of revising and updating our approach as we
went. We hoped that the team would eventually work itself out of its
job.

What does a Staff‐plus engineer do at your company?

It’s hard to say with too much confidence because Stripe was only just
introducing titles. It wasn’t public who was a Staff Engineer, but you
did have a sense of who the senior engineerswere based on the people
working on the most significant, impactful things.

There are some clear Staff Engineer archetypes. One is working on
deep technical projects, maybe scoping out or building new pieces of
infrastructure. Before the Payment Architecture team, I worked on
building Sorbet, which is our static Ruby type checker. I spent about
a year with two other senior engineers building that from scratch,
which was a good example of the deep, highly leveraged technical
work archetype.

There were also Staff Engineers who spent time wrangling cross‐
cutting projects, serving as a combination of architect and project
manager to pull together different parts of the organization to work
on a large problem. Typically these problems weren’t well‐aligned
with our current architecture or organization such that they required
collaboration across many different teams.

There were also Staff Engineers whoworkedwith one team, or a small
group of teams, and they served as the keepers of the team vision.
They’d identify what the team was building towards, and where they
wanted to be in one to five years. They’d work across the organization
to build and share that vision, then work to implement it.

How do you spend your time day‐to‐day?

222

https://sorbet.org/

This looked very different between the Payment Architecture role and
the Sorbet role. Sorbet was more of a “heads down and code” project.
On Payments Architecture, there was still some amount of coding be‐
cause we had a specific approach that we wanted to both try out and
to demo the ideas that we were pushing for.

I did a decent amount of projectmanagement aswell. Things like tend‐
ing to the task tracker, running the daily stand up, figuring out who
needed help or who was blocked. I also spent time being communica‐
tion glue across the company and engineering organization, especially
talking to teams that were interested in the tools and patterns wewere
building and advising them.

In that effort, I spent time in various meetings figuring out the tech‐
nical strategy, and also a fair amount of my week writing design doc‐
uments on the problems we saw along with promoting the shape of
architecture that we thought would solve them. Finally, I worked to
explain and sell those ideas to leadership and other teams, as a way of
setting the agenda and advocating for their investment and prioritiza‐
tion.

Where do you feel most impactful as a Staff‐plus Engineer?

Certainly the one that’s easiest to trace the impact ofwas Sorbet, where
in two years a three person team took Stripe from a dynamically typed
code base to a substantially statically typed code base. That impacted
all of the company’s six hundred engineers’ daily experience in their
editors and development environment.

That said, it’s hard to know whether that was truly the most impact‐
ful project. There’s a more nebulous argument that the architecture
strategy work will be more impactful in the long run.

What’s somethingyou’vedoneasaStaff‐plus engineer that youweren’t
able or allowed to do in earlier roles?

223

https://sorbet.org/

The question of “allowed” is interesting, and might not be quite the
right question because there were very few official policies on who
got what kind of role. Most things relied on more informal gauges of
seniority.

But that said, both Sorbet and the Payments Architecture team were
relatively ambitious projects. Sorbet for example required pulling
three senior engineers off of more concrete projects. Starting them
required high levels of organizational respect and trust to get permis‐
sion and support to pull the team off their existing work and having
them instead work on these projects for a year.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change?

This is somewhat seasonal around the planning process. Prioritiza‐
tion ultimately means staffing, and staffing decisions happen during
planning.

The planning seasonwas a particularly acute period, but Iwasmore or
less continually thinking about prioritization at the engineering‐wide
level. It might be noticing a problem that a lot of engineers were en‐
countering, or seeing something that was slowing teams down. It was
a constant, recurring thread that I thought about and it would period‐
ically become an acute priority where I’d spend time advocating for a
team to be created or to work on a problem.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

That wasn’t an angle that I spent a lot of time thinking explicitly about
in those terms, and I can’t think of clear examples where I would de‐
scribe that as what I was doing. An adjacent thing that I did a couple
of times was helping to bootstrap teams that I wasn’t part of. For ex‐
ample, some team would spin up to take over a system that used to be
part my capacity, and I would work with them in a close advisory role

224

to give them context and advice.

You first got the Architect title at Oracle after the Ksplice acquisition.
What was your process for getting both the Architect title?

I don’t remember if Ksplice had titles in place pre‐acquisition. After
the acquisition I spent one year at Oracle and had the title Architect,
which I think at the timewas their highest individual contributor level.
There was definitely some acquisition title inflation going on there. I
don’t know if I would have reached that title if I had not come in via
acquisition.

After Ksplicewas acquired byOracle and you became anArchitect, did
the work youwere doing on a day‐to‐day basis change from before the
acquisition?

I was broadly doing the same style of work. The thing that changed
was that I spent a lotmore time interfacingwith the Oracle Linux orga‐
nization within Oracle. I was focused on figuring out how our product
would integrate with theirs, and also bringing themup to speed on our
technology so that theywere able to use it. I had previously spent time
training new hires, but that was a much slower rate than what hap‐
pened at Oracle which was, “We’re dropping you into this 400‐person
org, and now training them is a big part of your job.”

What two or three factors were most important in you reaching Staff?

The specific path I took was very dependent on coming in quite early
at Stripe. I was roughly employee #30. The thing that I did with that
though, which I think is not identical to what everyone else did, is I
tried to build very broad context and awareness across Stripe. That
was comparatively easy to do, when there were 15 engineers; there
weren’t that many things then.

But I spent a lot of effort as the company grew trying to stay aware of
everything that was going on in engineering: the interactions between

225

https://en.wikipedia.org/wiki/Ksplice

teams, the scaling pain points. I tried to have an unusually global per‐
spective. That helped me know which problems were important to
work on and especially what the one level removed important prob‐
lems were. If I knew the organization had a goal of launching a spe‐
cific product, I would have the perspective to see the reason why it
would be hard is because of these previous architectural decisions, or
that this downstream system wasn’t currently up to the task.

As the organization got really big, seeing those one level removed de‐
pendencies got increasingly hard, and trying to keep a broad view and
systems level view helped with that. It also helped me connect teams
together, making me a router of information and ideas, as well as an
originator of proposals.

Many teams get stuck looking at their section of the world, and have
a less developed conception of how their internal customers are in‐
tegrating with them. This happens because they’ve never worked on
the internal customer teams they support. I helped bring teams the
context of how other teams truly used their systems, and connected
them to other people across the organization whose perspectives they
should gather,

It’s hard to keep all this context as the organization grows, but it’s even
harder for someonewho didn’t start building that global context when
the company was smaller. By starting early, you have a huge compet‐
itive advantage relative to someone starting later who tries to reverse
engineer the architecture and organizational dependencies.

When I spokewith KeavyMcMinn, one interesting point shemadewas
that sometimes it’s helpful to be able to see things without the full his‐
torical context. Did you ever find that your context made it harder to
move forward?

Absolutely. I would notice myself coming into conversations with a
team and I was prepared to give them a seven year history of every

226

time someone had attempted the thing that they’re doing and why it
didn’t work. It would take deliberate effort to review that history and
ask myself, “Why is this information helpful or relevant to them?”

Sometimes the information isn’t useful. On the other hand, if some‐
one tried to do this thing and died on the rocks, there may be some
really hard technical problem that’s still around. Theremight be some
value in pointing out the rocks, but also there’s a lot of value in having
the audacity to try again because it’s years later and we’ve become a
different organization.

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

I’m instinctively a little bit wary of this sort of idea of a staff project,
in part because one of the archetypes of Staff Engineers that I’ve seen
are people who don’t necessarily run grand projects themselves or do
big things. But just are sort of incredibly effective gurus and routers
who make the whole engineering organization run better.

Maybe my closest thing to a Staff Project is that I got my final pro‐
motion for work on something called the “Data Model Stripe Release
Plan.” I led this six month long plan to get a bunch of teams to co‐
ordinate on a handful of projects addressing the weaknesses in our
data models, and advancing the data model in ways that would, aspi‐
rationally, be transformative.

I don’t think it’s a great instance of a Staff Project in some ways. For
one, we did good work, but it was much less transformative than any‐
one hoped due to a combination of reasons. Someofwhichwere inmy
control and some of which were that the problems were just too hard
and the organization didn’t have the resources to actually fix them in
six months.

While that project wasn’t necessarily better work than I did in other

227

halves, it was a very visible, high profile role. It created visibility and
increased my standing in the company in important ways.

Canyou share apiece of advice onbeinga StaffEngineer thatwashelp‐
ful for you?

One lesson that I learned was the importance of focus and prioritiza‐
tion. That’s especially true when you have the broad organizational
context that I talked about earlier. It’s very easy at anymoment to iden‐
tify thirty different things that you would like to be working on.

Occasionally you can push each of those thirty things forward a little
bit. And that’s productive for a while, but you need to be careful. If
these are things that aren’t gettingworked on and that you think should
get worked on, you’re going to have much better luck picking one of
them at a time and really focusing your effort rather than pushing a
little across many different projects at once.

One big distinction is whether there are already teams working on
those thirty things. If there are already teams working on them, but
not in the direction that you think is effective, you can get a lot of lever‐
age out of going to those thirty teams and helping unblock them.

In the end you have to say, “There are all of these things that I wish I
could work on, and I’m not going to do all of them. This year I’ll pick
one or two to work on, and I’m going to deliberately ignore the other
for a while, even though I think they’re major problems.”

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

One thing is that I’m a huge believer in the primacy of Conway’s Law
to guide organizations’ technical architecture.

Another is to build and invest in your relationships with engineering
leadership: the managers, the directors, and the vice‐presidents. I
think some of this might be specific to organizational structure, but

228

certainly at Stripe those people often had a lot of implicit power be‐
cause they were the obvious people to go to with questions. They also
have a lot of influence over staffing and prioritization.

It’s important to have good relationships with them both so that you
can influence them with your ideas, but also so that you can under‐
stand what problems they’re seeing. You need to know what their in‐
centives are, and what problems they perceive that you don’t perceive.
Having better alignment with leadership makes a lot of things much
easier.

Something else that has been quite valuable for me is estimation. I
find it really valuable to be able to look at a systemandhave thehabit of
estimating howmany gigabytes‐per‐second is this thing, or howmuch
storage would this data take? You don’t have to get it perfect, getting
the nearest power of ten is usually enough to be useful.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

I considered it but not very seriously. I have a pretty good understand‐
ing of myself that, at least for now, I wouldn’t really enjoy that work.
I think I’d find all the interactions not a sustainable way to spend my
time. I occasionally wish I was more interested in it, because I do per‐
ceive it as a way to get a lot of power, but I fortunately have enough
self awareness to believe, I think correctly, that I wouldn’t enjoy it and
therefore wouldn’t be good at it.

What are some resources (books, blogs, people, etc) you’ve learned
from?

I get that question decently often because I have an unusually broad
breadth of general knowledge, and I don’t have a good answer for
where it came from. I’m pretty voraciously curious about computing,
software and architecture. I read lots of different things, and I
spend more time reading links on software engineering Twitter than

229

perhaps is healthy.

It’s also been really valuable for me to cultivate a good personal net‐
work of other senior engineers. I chat with them informally about
whatever it is that we’re working on and thinking about. When you
have personal connections, you can get very unvarnished views of the
problems people are seeing and the solutions they’re considering.

I’ve mostly bootstrapped this through the friends‐of‐friends networks
of people I’ve known professionally or going all the way back to when
I was in school. It’s not something I sought out post facto.

I read the occasional technical paper, but it’s not something I do ac‐
tively. It’s mostly when it’s referenced by someone or comes up in
some other context. It’s definitely not something I make any effort to
keep track of systematically or to review the recent publications. I do
think that having a decent handle on the quote unquote foundational
literature is really handy.

230

Diana Pojar - Staff Data Engineer at Slack

April, 2020 blog, twitter, linkedin

Tell us a little about your current role: your title, the company you
work at, and generally the sort of work your team does?

I’m a Staff Data Engineer and the Technical Lead for the Data Platform
team at Slack. I joined Slack in February 2016 and I was one of the
first engineers in the Data Engineering team. I was heavily involved in
building many of the tools and infrastructure to make data available
for long‐term analytics. When I joined, the team had just made the
decision to use Thrift as the logging format. If anyone wanted to get
insights, they had to schedule cronjobs on top of the read replicas of
the production MySQL database.

The purpose of the Data Engineering team at Slack is to enable anyone
in the company (data science, engineers, product managers, etc) to
access data, so they can compute insights, drive business decisions
or build new features. The Data Platform team focuses on building
services and frameworks that work at scale to empower everyone that
needs to process or use data in the Data Warehouse. Some things that
our teams own are: theDataDiscovery service that exposes task, table,
column lineage and generalmetadata, the event logging structure and
the pipeline that consumes the events and exposes them in raw tables
in the Data Warehouse.

What does a Staff‐plus engineer do at Slack? How do you spend your
time day‐to‐day?

The role of a Staff‐plus engineer depends a lot on what the team needs
and also what the particular engineer strengths are. From my experi‐
ence the responsibilities of a Staff‐plus engineer can change over time,
but usually their main focus is working on projects/efforts that have
strategic value for the company, while driving technical design and
up‐leveling their team.

231

https://diana.dev/
https://twitter.com/podiana
https://www.linkedin.com/in/dianapojar/

There are twobig categories that I’ve seenStaff‐plus engineers fall into:
focusmore on depth (specialist) or focusmore on breadth (generalist).

For the first category, folks that focus more on depth are usually ex‐
perts in a particular domain and most of their time is spent on writ‐
ing code or working on technical design documents to find solutions
in their area of expertise. Companies deal with unique challenges
and subject matter experts are needed to drive technical solutions for
these extremely hard problems. For example, at Slack, as the com‐
pany grew and our system needed to scale and perform, there is a
principal engineer that his main focus and passion is to detect and
fix performance problems.

Folks that focus on breadth usually work more closely with the lead‐
ership team, influencing the org or company wide technical vision,
improving processes and culture. Due to their breadth, they are more
flexible and can work on different areas of the engineering organiza‐
tion based on the company priorities and needs.

Personally, for now, I enjoy and focus more on breadth and how I
spendmy time depends a lot onwhatmy team and organization needs.
I would say that so far this year, about 50% of my time is spent on
technical leadership and talking with people about larger technical in‐
vestments that we should focus on, and 50% of my time is focused on
mentoring, reviewing code, writing code, jumping on incidents and
fixing critical issues, etc. The ratio does change quarter by quarter.

Where do you feel most impactful as a Staff‐plus Engineer? What’s
something you’ve done as a Staff‐plus engineer that youwouldn’t have
done earlier in earlier roles?

Personally, I feel that it’s quite noticeable the increase in trust and re‐
spect from people that did not work with me before my promotion /
title change. Having the title strongly correlateswith one’s ability to in‐
fluence the organization/company roadmap and priorities ‐ basically

232

https://slack.engineering/technical-leadership-getting-started-e5161b1bf85c

you get to be in the “room where it happens”.

I get to be part of building things that have impact for the direct suc‐
cess of the company. Advocating for such projects and being part
of them was not something that would’ve been achievable in earlier
roles.

I’m also able to uplevel others that are more junior and make their
voices heard. Having a Staff+ title brings some privilege that others
don’t have and I try to leverage that to help uplevel my team / peers.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change? What’s something you’ve advocated for?

A significant amount of my time is actually spent on advocating for
technical solutions, processes, architectural or cultural changes ‐ it’s
not only all about writing code. I’m constantly involved in the tech‐
nical design review process for many of the teams that need to build
systems that rely on the Data Engineering tools and services. Besides
being involved in advocating for technical projects, an area of my fo‐
cus is to improve culture or process changes.

One area that is dear to my heart and that I believe I had a significant
role in my organization is around Incident Management and Analy‐
sis. I’ve been involved with the company’s resilience team to improve
our Incident Analysis processes, but for my Data Engineering organi‐
zation I was very involved in driving our general oncall expectations
and structure, while also adopting the company’s Incident Response
Structure.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

Sponsoring is actually an important area for me, as I focus on build‐
ing amazing relationships with many people that I work with and I
strongly believe that we need to lift each other up. Through my jour‐

233

ney to get to Staff Engineer and fighting withmy own impostrome syn‐
drome, I had the opportunity to work with amazing people that spon‐
soredmeandhadahuge impact onmygrowth. A couple of people that
I worked with and have been my mentors and role models over time
are Josh Wills, Stan Babourine, Bogdan Gaza and Travis Crawford.

Mentoring and growing people aroundme has always been important
tome and being in a Staff+ role, you have a type of privilege and power
that others don’t have and I try my best to use this to help and uplevel
people around me.

You first got the title Staff Engineer at Slack. Were you hired as a Staff
Engineer? If not, what was the process of getting promoted to Staff?

I joined Slack as a mid level engineer and after one year I got my Se‐
nior promotion. As a Senior Engineer I had the opportunity to work
on multiple projects with org/company wide impact, many of them
that were directly tied into how our company business metrics are be‐
ing computed, whichwere critical for getting the company ready to go
public.

After being 2 years in the Senior role,mymanager toldme that I amop‐
erating at the next level and that he believed there was a strong case
to make and he planned to put me up for promotion. At Slack, the
Staff+ Engineering promotions need to have a promo package put to‐
gether that illustrates with clear details and measurable information
that a person operates at a certain level. The main areas of focus are:
Technical Quality, Impact, Collaboration and Execution. We worked
together to write and fill in all the necessary details for the promotion
package. As an IC, I highly recommend, if it’s possible, to work with
your manager and write this document together: it should be a team
effort. After the packet is ready, the promotion package is evaluated
by a special promo committee where some leadership and staff+ engi‐
neers from the whole company are present.

234

https://www.linkedin.com/in/josh-wills-13882b/
https://www.linkedin.com/in/stanb/
https://www.linkedin.com/in/bogdangaza/
https://www.linkedin.com/in/traviscrawford/

What two or three factors were most important in you reaching Staff?
How have the companies you joined, your location, or your education
impacted your path?

As I look back and contemplate on how I felt and thought about this
when I was a junior engineer, the main factor to get to Staff Engineer
is to actually believe thatYOUCANDO IT and don’t let the impostrome
syndrome win.

In general, I’ve always tried to be very intentional with my career
choices and usually I spend some time every year to think about what
I’m doing and the areas of growth that I want to focus on. I’ve found
this extremely valuable, because it makes me take a step back and
assess what I am currently doing, to ask if I’m still growing in my
current environment and think about new opportunities.

So at the end of 2015, when I decided I wanted to leave Twitter, I found
out that Slackwas starting to build their Data Engineering team. Being
able to build and design from scratch the systems, services and frame‐
works was extremely exciting for me. Joining a newly‐formed team
at Slack was a unique opportunity that definitely contributed to reach‐
ing Staff Engineer. It gaveme the opportunity to work on projects that
had org or company wide impact. For example, the first big project
I worked on moved about 25% of the load on the production MySQL
database off to the Data Warehouse, saving the company millions of
dollars.

Another critical factor that influencedmy path to become a Staff Engi‐
neer were the people around me, as I was lucky to have amazing role
models and mentors in my team. When I joined Slack, I was the 4th
person in a very senior team (everyone else was Senior Staff), which
contributed tomydesire to provemyself and show that I belong. Build‐
ing a track record of mentoring, visibility and technical quality in ev‐
ery project also contributed to my path towards Staff, I did not see my

235

job as just a job, but I’ve put a lot of passion into every project or prob‐
lem we tried to solve.

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

No, I did not have an assigned “Staff Project” and that is not something
that it’s part of the promotion process at Slack. There is a career ladder
that describes the general expectations and scope of impact for every
level andwith Staff+ levels this level of scope starts to expand fromorg
wide impact towards company wide impact.

I usually always try to challenge myself and I was always looking to
drive change and impact in my organization. I think the most impact‐
ful project that I worked on and contributed to my path towards Staff
Engineer was being involved in thinking through and implementing
the technical design on how our company business metrics (ex: ARR)
are computed to make sure the process is reliable, scalable and most
importantly, reproductible. This was a critical initiative as Slack was
completing a public company readiness process.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you? Looking back, is there an easier path to Staff
that you could have taken?

Something that I felt was extremely helpful was to understand that a
Staff+ Engineer’s work and responsibility is more than writing code.
Basically what got you to senior level will not get you to Staff+. It’s im‐
portant to understand the expectations of this role in your company,
but also in the industry as a whole, as there are some differences be‐
tween companies.

Workwith yourmanager ormore senior peers to find projects that will
challenge you and increase the scope of your work. Something that
was extremely helpful to me is that I started investing in developing

236

my leadership and communication skills more. I also started framing
and thinking about certain things in a different way, when I was start‐
ing feeling stressed or unsure of my own abilities, that’s often a sign
that I’m growing and stumbled into an area that offers a lot of growth
opportunities.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

Reaching Staff Engineer brings a lot of responsibility and you should
always be a strong advocate for your peers. As an IC, I think execu‐
tion and being hands on are always the “easy” thing to do and the hard
things are actually driving change and impact in your organization.

I think that in different moments of your tenure as a Staff engineer,
you might see yourself focusing on different things and that is ok and
expected. There’s not a single clean cut definition of what a Staff Engi‐
neer should do.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

This is actually a question that I askmyself every couple of years. Every
time that I self‐reflect and think about the answer to this question, the
answer, for now, is no ‐ I don’t want to be a manager. I love coding too
muchand I strongly believe that to be a successfulmanager you should
not write code, and should instead be fully focused on growing your
team. I like being involved in technical decisions and thinking about
technical solutions way toomuch to give up this hands‐on experience,
even though as you get inmore senior roles, the time you spend coding
will decrease.

Not being an EngineeringManager doesn’tmean that you cannot influ‐
ence and help people grow. As a Staff+ engineer you do need many of
the core management skills, even though you are not a manager and I
have found reading management books extremely helpful. I actually

237

think that these two roles, even though they are on separate, parallel
tracks, they are closer to each other than people think.

It’s possible that at some point in time, the answer to this question
might change and that is ok.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

I use Twitter extensively, but I’m mostly a consumer and follow many
people in tech. I usually follow people that I saw talking at confer‐
ences or I workedwith and I find their content relevant tome. Here’s a
couple, in no specific order: Camille Fournier,Lara Hogan, JoshWills,
Vicki Boykis, David Gasca, Julia Grace, Holden Karau, John Allspaw,
Charity Majors, Theo Schlossnagle, Jessica Joy Kerr, Sarah Catanzaro,
Orange Book

I also enjoy reading (I read about 50 books each year) and since last
year, I always try to leave a mini review on my Goodreads account for
every book I read, but here are a couple of books that I found useful:

• Thanks for the Feedback
• Radical Candor
• The Manager’s Path: A Guide for Tech Leaders Navigating
Growth and Change

• Leadership and Self‐Deception: Getting Out of the Box
• The Coaching Habit: Say Less, Ask More & Change the Way You
Lead Forever

• First, Break All the Rules: What the World’s Greatest Managers
Do Differently

• The Courage To Be Disliked: How to free yourself, change your
life and achieve real happiness

• Give and Take: A Revolutionary Approach to Success
• Mistakes Were Made (But Not by Me): Why We Justify Foolish
Beliefs, Bad Decisions, and Hurtful Acts

238

https://twitter.com/skamille
https://twitter.com/lara_hogan
https://twitter.com/josh_wills
https://twitter.com/vboykis
https://twitter.com/gasca
https://twitter.com/jewelia
https://twitter.com/holdenkarau
https://twitter.com/allspaw
https://twitter.com/mipsytipsy
https://twitter.com/postwait
https://twitter.com/jessitron
https://twitter.com/sarahcat21
https://twitter.com/orangebook_
https://www.goodreads.com/user/show/11950463-diana-pojar
https://www.goodreads.com/book/show/20487821-thanks-for-the-feedback
https://www.goodreads.com/book/show/32809138-radical-candor
https://www.goodreads.com/book/show/34616805-the-manager-s-path
https://www.goodreads.com/book/show/34616805-the-manager-s-path
https://www.goodreads.com/book/show/18966789-leadership-and-self-deception
https://www.goodreads.com/book/show/29342515-the-coaching-habit
https://www.goodreads.com/book/show/29342515-the-coaching-habit
https://www.goodreads.com/book/show/30109687-first-break-all-the-rules
https://www.goodreads.com/book/show/30109687-first-break-all-the-rules
https://www.goodreads.com/book/show/36752952-the-courage-to-be-disliked
https://www.goodreads.com/book/show/36752952-the-courage-to-be-disliked
https://www.goodreads.com/book/show/16158498-give-and-take
https://www.goodreads.com/book/show/9530608-mistakes-were-made-but-not-by-me
https://www.goodreads.com/book/show/9530608-mistakes-were-made-but-not-by-me

That’s not an exhaustive list!

239

Dan Na - Staff Engineer and Team Lead at Squarespace

March, 2020 blog, twitter, linkedin

Tell us a little about your current role: your title, the company you
work at, and generally the sort of work your team does?

I’m a Staff Engineer at Squarespace. Squarespace is the leading all‐in‐
one platform to build a beautiful online presence: websites, domains,
online stores, marketing tools, scheduling appointments, etc. I also
operate as the Team Lead of the Internationalization Platform team,
which is responsible for building and maintaining the foundational
primitives of internationalization across Squarespace products. Engi‐
neers use the tools and libraries we own to create localized products.

What does a Staff‐plus engineer do at Squarespace? How do you spend
your time?

I think in practice the day‐to‐day responsibilities of Staff‐plus engi‐
neers vary, depending on both your precise role and how your respon‐
sibilities map in the organization.

My position as a Team Lead means I’m fully accountable for the out‐
put of my team, both from a business and technical perspective. On
the business side, I spend a lot of time meeting with different teams
and functions across the company. These stakeholders include prod‐
uct, strategy, customer operations, etc. I want to ensure that I have
as many inputs as possible to validate that my team’s roadmap reflects
our company’s most important priorities.

On the technical side, I often find myself reviewing technical docu‐
ments or scoping work in front of a whiteboard for my team’s work in
flight. My role has evolved to less hands on coding work andmore ask‐
ing probing questions about architectural decisions and deployment
strategies. One irony is that as a Staff Engineer I actually code signif‐
icantly less than I did as a non‐Staff. By no means is that universally

240

https://blog.danielna.com/
https://twitter.com/dxna
https://www.linkedin.com/in/danielna/

true across the role, but in the context of my team, closing vim and op‐
erating in more of a strategic/oversight role was the highest leverage
use of my time. I’m lucky in that my team is already composed of awe‐
some engineers so my specific code contributions are less material to
our output.

But many Staff‐plus engineers at Squarespace are not Team Leads and
code a lot. Others focus on engineering process and culture. In gen‐
eral I’d say Staff‐plus Engineer responsibilities are highly contextual.

Where do you feel most impactful as a Staff‐plus Engineer? What’s
something you’ve done as a Staff‐plus engineer that you weren’t able
to or wouldn’t have done in earlier roles?

I have a seat at the table at higher level engineering discussions that
occur at a level above individual projects and teams. We have recur‐
ring staff engineering meetings where we discuss problems that span
teams which are both technical and non‐technical in nature. As a hy‐
pothetical example, I’d feel comfortable surfacing what I perceive as
shortcomings in the engineering onboarding process in this type of
meeting. It can be hard to attribute a topic like engineering onboard‐
ing to a specific team but a lack of formal ownership doesn’t make it
less important. I think a key responsibility of Staff‐plus is a willing‐
ness to own all of the things that contribute to (or block) engineering
output, which includes both technical strategy and culture.

Regarding something that’s changed, on an everyday basis my title af‐
fords a high level of credibility at the outset of conversations. While
I’mnot advocating for a culture that values titles over ideas, I’d be lying
if I said it didn’t help me escalate or push through issues that I previ‐
ously might’ve had a harder time getting through.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change? Can you share a story of influencing your organi‐
zation?

241

I don’t really think about advocacy in terms of categories. I mostly
just want our engineering team and product to be the best it can be
and address things that experience tells me I can help change.

Some examples:

• When I first joined the company we were in the midst of
enormous employee growth, and I noticed it felt hard to get
to know anyone on other teams unless you happened to work
on a project together. As a result I created a slack room —
#connect‐engineering — that uses a bot to randomly pair two
people in engineering for coffee every two weeks. That room
has been pairing people for coffee for over two years now.

• I knew based on personal experience that engineering leader‐
ship roles can feel isolating and talking to coworkers I could hear
some of those feelings of loneliness. As a result somepeers and I
created an unofficial EngineeringManagement Book Club, open
to Team Leads and Engineering Managers. There are now two
self‐organized book clubs with ~10 participants each, providing
a safe space for both new and experienced leaders to support
each other. The feedback about book club has been enormously
positive.

To be fair, neither of these examples required a Staff‐plus title. But I
do think part of being an effective Staff‐plus engineer is caring about
and addressing cultural gaps as much as technical gaps.

You first got the title Staff Engineer at Squarespace. What was the pro‐
cess of getting promoted to Staff?

I was hired as a Senior Software Engineer II (one level below Staff). I
was fortunate to land on a teamworking on a high impact project that
I was able to contribute to immediately. The hardest parts about the
project concerned a problem space I was already familiar with—wide,
sweeping changes across codebases— and I proposed, prototyped and

242

eventually shipped an alternative architecture that I felt would better
position the company for success. That became our frontend transla‐
tion system, which I wrote about on our engineering blog: Building a
System for Frontend Translations.

I also owned the communication and education effort around the new
translation system, presenting the architecture at internal meetings
and sending relevant emails about the status of the project. Grouping
this technical contribution to some meaningful cultural initiatives —
other internal presentations, #connect‐engineering, etc. — my man‐
ager had a good case for promotion that was agreed upon by the Engi‐
neering Directors.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

I feel like progressing up a career ladder is an additive exercise in forc‐
ing you to care about more things than you previously cared about.
Caring about more things is hard.

As a trivial example: The intern cares about the small aspect of
a feature they can build in three months. The full‐time engineer
on the team cares about the entire lifecycle of that feature. The
team lead/manager cares about the suite of features that compose
a product. The director cares about the suite of products owned by
their organization. And so on.

Every rung up the ladder means you care about another layer of ab‐
straction, in addition to caring about all the layers beneath your cur‐
rent one.

I feel like a Staff Engineering role is similar in that you’re leaving the
comfort zone of a specific technical domain to a more general prob‐
lem domain: engineering. And as leaders you’re leaving a potential
technical comfort zone to the realm of the system of challenges that
impact engineering output. What are the biggest problems holding

243

https://engineering.squarespace.com/blog/2018/building-a-system-for-front-end-translations
https://engineering.squarespace.com/blog/2018/building-a-system-for-front-end-translations

back engineering teams that fall between the cracks of team owner‐
ship? Those are your problems now, in addition to all of the problems
of your technical domain.

So while Staff is an aspirational title to achieve, it also includes signif‐
icant added responsibility. You’re a leader now, whether you want to
be or not.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

I think sponsorship is a key responsibility of any senior role and ma‐
terial to the growth of any engineering organization. I suppose the
definition of “sponsorship” varies, but to me one tangible way is to
provide opportunities for exposure. For example:

• Giving less senior teammates the opportunity to own and
present their work at wider meetings.

• Reaching out to a team who just shipped an awesome feature to
write a post for our engineering blog.

• Encouraging someone I met in a #connect‐engineering coffee
whohas unique experience or perspective to give an internal pre‐
sentation.

• Ensuring that meetings are not dominated by the perspectives
of a vocal minority and soliciting opinions from everyone in the
room.

• Giving public kudos in a large slack room to someone who just
did something great that everyone didn’t see.

Lara Hogan has a great post on sponsorship in practice: What does
sponsorship look like?

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

Yes, and I still actively consider it. I know it’smore convenient to think

244

https://larahogan.me/blog/what-sponsorship-looks-like/
https://larahogan.me/blog/what-sponsorship-looks-like/

about the two ladders as mutually exclusive but I don’t.

I still enjoy both shipping code and running teams, and I think the
ability to do both at a high level is critical for long‐term engineering
success. Charity Majors has a fantastic blog post on this topic that I
recommend reading: “The Engineer/Manager Pendulum”.

Charity argues that “manager career path vs engineering career path”
is a false dichotomy, and taking time to alternate between both roles
makes you better at both. This maps to my own experience. I’m a
bettermanager because I knowhow terrible it is to be an ICon apoorly
planned project, and I’m a better IC because I know how and when to
sound an alarm when a project is going poorly.

I think one of themost important strategic skills for building software
is the ability to converge towards pragmatic decision making. A fail‐
ure mode I’ve seen repeatedly is when a product manager comes with
business requirements and an engineer comes with technical push‐
back and neither are willing to budge. The ability to empathize with
both sets of incentives and navigate that tension is the only way to get
anything done, and the best way to build that empathy is to sit in both
seats.

To specifically answer this question: my previous role prior to join‐
ing Squarespace was an Engineering Manager. I love being an Engi‐
neering Manager but I wanted to keep my technical skills sharp so I
accepted an IC role. Then I was promoted to Staff.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

In the context of engineering leadership, two books stand out.

My favorite engineering leadership book of all time is High Output
Management by Andrew Grove. I pick it up from my bookshelf once
a year and end up unintentionally re‐reading it. Many ideas from

245

https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/
https://www.amazon.com/dp/B015VACHOK/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/dp/B015VACHOK/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

Grove’s book have significantly shaped how I view work and leader‐
ship: “the measure of a manager is the output of the organization
underneath them,” “delegation is not abdication,” the concept of
engineering/managerial leverage, etc. In terms of communicating
the tactical aspects of engineering leadership I still think Grove’s book
is best.

On the human side of leadership, I really loved Lara Hogan’s book: Re‐
silient Management. I had the absurdly good fortune of starting my
NYC tech career at Etsy in 2013 where Lara was my first engineering
manager. Lara is a master of unpacking and addressing the hardest
parts about navigating emotions and personalities, fostering psycho‐
logical safety, and sponsoring coworkers. And having worked directly
under her for close to four years, she is totally the real deal and prac‐
tices what she preaches.

In terms of non‐books, I subscribe to and enjoy reading “Irrational
Exuberance”, where Will Larson regularly blogs about engineering
management with a highly pragmatic and strategic perspective. I’ve
also recently discovered and enjoyed reading Marty Cagan’s “Insights
Blog”, mostly because product leadership is a domain I’m less familiar
with and am interested in learning more about.

My rolemodels are someof the amazing coworkers I’veworked closely
with over the years. I sat next to Daniel Espeset for four years at Etsy
and learned an immeasurable amount about coupling technical exe‐
cution with cultural impact. I learned a lot watching Lara do things
like advocate for and achieve pay equity across our engineering group.
I learn a lot watching current coworkers like Tanya Reilly institute
and evolve our engineering processes tomatch our ever‐growing scale.
I’m inspired most by people whom I’ve personally witnessed have the
courage to change companies for the better, despite whatever friction
they encountered along the way.

246

http://larahogan.me
https://resilient-management.com/
https://resilient-management.com/
https://lethain.com/
https://lethain.com/
https://svpg.com/articles/
https://svpg.com/articles/
http://www.danielespeset.com
http://noidea.dog

Joy Ebertz - Senior Staff Software Engineer at Split

March, 2020 blog, twitter, linkedin

Tell us a little about your current role: your title, the company you
work at, and generally the sort of work your team does?

I’m a Senior Staff Software Engineer at Split.io, working on the back‐
end of what we call the COE team. Split is a feature flagging and exper‐
imentation framework. We focus on enabling our customers to sep‐
arate deployment and release in CI/CD and also enabling A/B testing.
My team is responsible for most of the main business logic of our web
application, including everything fromdata storage to the APIs. There
is a separate team that focuses on the experimentation side, including
all of the detailed statistics that goes into that, so we’re able to focus
more on the main platform.

What does a Staff‐plus engineer do at Split? How do you spend your
time?

I’m still somewhat new, so I’m still working to define my role, which
is part of the beauty of more senior roles. Today, I’m still ramping up,
so I’m probably spending around half to three quarters of my time on
tasks for my specific scrum team, just like any other engineer here.
With the rest of my time, I’m participating in conversations and work‐
ingwith other engineers to define a lot of our longer term architecture
and strategy, including our future API and platform strategy, how we
want to develop our authorization framework, breaking up and decou‐
pling our builds and more. I’ve recently also taken over leadership
of our backend chapter and now co‐lead it with another engineer and
we’re working to put together a backend technical vision, prioritize
tech projects and lead standards discussions. If that wasn’t enough, I
also continue to write regularly on my blog and speak at conferences.

Where do you feel most impactful as a Staff‐plus Engineer? What’s
something you’ve done as a Staff‐plus engineer that you weren’t able

247

https://medium.com/@jkebertz
https://twitter.com/jkebertz
https://www.linkedin.com/in/joyebertz/

to or wouldn’t have done in earlier roles?

I feelmost impactful when I can facilitate setting a technical vision for
an area and get people moving toward that vision. I think we would
all agree that wewant our code to be better architected than it is or im‐
proved in some way. However, I’ve found that often people have some
vague sense of wanting better without having a clear idea of what that
thing they want is. I like to help the group decide on a shared under‐
standing of where exactly they’re trying to get (it’s actually okay if we
never get there) and come up with a general game plan of how to get
there. This way we’re all marching in the same direction. Having a
clear idea of what we want allows us to work with Product to get it pri‐
oritized. Even if we never get the whole thing prioritized, knowing
how to get there, allows us to slowly make changes that will lead us
in that direction. For example, if I’m touching a file anyway and can
make a few tweaks that brings me closer to that vision, I will. Without
knowing that vision, those tweaks would never happen. The vision
alone isn’t enough, we need everyone to understand that vision and
internalize it. Part of the power of those small changes I just men‐
tioned is if everyone is making them as a part of their normal coding.
Suddenly we have everyone working toward a common goal.

I think the biggest thing that differs betweennowandwhen Iwasmore
junior is my sense of ownership and responsibility. I’ve always been
willing topushbackor to drive for improvement. However,when Iwas
more junior, I would often just assume that something was someone
else’s problem. Now, it’s allmy problem. Imay choose to not prioritize
something because I think that it’s less important than something else,
or I may choose to delegate or pass a problem off to someone else, but
I still see it as my problem. I no longer ever assume that someone else
will handle something. I’m still a big believer in picking my battles,
I won’t work on everything ‐ that’s too much. I also, however, won’t
assume that anyone else will either, so if it’s worth getting done, it’s up

248

to me to either do it or to pass it on to someone else.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change? What’s something you’ve advocated for? Can you
share a story of influencing your organization?

Yes. All of those. In my current role, I would say this is a huge part
of my job. While, as an engineer, I am also contributing on a scrum
team, I would say a lot of my job is to keep an eye out for pitfalls I’ve
seen before or larger patterns of problems. I see my job as making all
of engineering more efficient ‐ be that through technology, through
architecture or through process. However, I should never be making
changes for the sake of changes. I’ve advocated for a number of things
over the years, from rewriting our email notification system to rethink‐
ing testing to reworking several authorization frameworks.

For some things, like the email overhaul, I didn’t do anything big or
grand, I just reminded Product every time they wanted to add a notifi‐
cation that our systemwas ready to fall over and thatwe really couldn’t
add anymore until we fixed it. As I pushed back, engineers aroundme
also realized that they could push back. At first Product mostly opted
to not add more notifications, but eventually they decided to fix the
system. In this case, it was mostly a matter of explaining to them the
risks of the system and sticking to what I thought was the right course
of action in terms of keeping our systems running.

For other things, such as the authorization frameworks, I was tasked
with finding a solution. In these cases, even when people want a
new/better solution, you still need to convince them that you’ve
picked the right thing. With incredibly complex systems, people will
often think they’ve found things you’ve forgotten about (and maybe
they did), so it’s really important to seek feedback early and often
and to carefully record and communicate both what you chose and
why but also what else you considered and why you didn’t chose

249

something else. People need to feel heard and they need to know that
you fully considered their concerns. They also want to understand
what your thought process was, but even more important, they want
to understand that you did thorough research and didn’t just pick
the first thing to come along. In fact, when I’m vetting someone
else’s design, this is one of the things I really look for ‐ what else was
considered?

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

Yes. As soon as you get to any sort of more senior role, this is always a
part of your role assuming you chose to take advantage of it. Since I’m
still new at Split, I haven’t had much of a chance to here, but I’m pos‐
itive that will change. Sometimes sponsoring is the big stuff ‐ recom‐
mending people to lead projects or manage a team, but a lot of spon‐
soring is smaller things ‐ encouraging someone who is a little unsure
of themselves, showing off their accomplishments tomore senior peo‐
ple they wouldn’t normally have access to, finding ways to delegate
your work to people who could get a growth opportunity from doing
it. I think it’s possible to be a senior staff engineer without sponsoring,
but I’m not sure it’s possible to be a great senior staff engineer without
sponsoring. Sponsoring is one of themost powerful wayswe can grow
those around us and I would say that growing others is one of themost
important aspects of our role.

You first got the title Staff Engineer at Box. What was the process of
getting promoted to Staff?

At Box, we submit a promotion case that outlines how, based on the
engineering rubric, we’ve already been operating at the next level.
Our managers also submit their recommendation and the two go to a
promotion committeemade up ofmanagers and ICs (at least one level
above the level we’re applying to). They review the case, call in the

250

manager to answer any questions and then make a recommendation.
Our VP was able to change any of the decisions (although to my
knowledge this never happened). If the answer was no, feedback was
given as to why and you could repeal the decision with additional
information or try again the following time. Appeals did sometimes
go through, so if you disagreed with the feedback, it was worth trying.
I liked this process because it allowed the person with the most
context on our accomplishments be the one to write them up and
it allowed you to go up for a promotion even if your manager didn’t
agree. On the other hand, I didn’t like the process because it subtly
discriminates against those with a little less self confidence and those
who struggle with self‐promotion. It also resulted in managers taking
a little less initiative in starting off the promotion process (letting
engineers come to them saying they wanted the promotion rather
than suggesting it).

What two or three factors were most important in you reaching Staff?
How have the companies you joined, your location, or your education
impacted your path?

I would say that my location probably hasn’t mattered too much. Edu‐
cation helpedme a lot in terms of getting interviews when I was more
junior, but a lot less so (at least directly) since then. I would say that
the three biggest factors for me were company, visibility and opportu‐
nities.

I think it’s possible to advance at a lot of companies. However, I found
that being at a fast‐growing startup really helped me out. When I
joined Box, engineering was around 30 people and when I left, 8 years
later, it was at a few hundred, but much of that growth was in the
first half. This allowed me to come into a smaller engineering envi‐
ronment where it was possible to really get to know the environment,
people and code. Then, because we were growing, there were lots of
leadership opportunities and technical challenges for thosemotivated

251

and willing to take them. Because we grew, the opportunities grew
with me. At the same time, there were also enough people around
me for me to learn from (I was previously at a really tiny startup ‐ 2‐4
people, where that really wasn’t available).

By visibility, I just mean finding some way to be known. I’ve always
worked onsite, which I findmakes this a little easier, but I think this is
possible even if you are remote (although possibly a bitmore challeng‐
ing). If you do really great work, but no one knows about it, when it
comes time for promotion, you’ll be passed over. Furthermore, as you
become more senior, part of your job becomes mentoring and teach‐
ing others and helping your company to create a tech brand ‐ all of
these are by definition, visible. Visibility can take a number of forms,
but for me I would say that a few things contributed. I was very active
in our Slack discussion forums, answering questions for people wher‐
ever I could. I also did a lot of blogging and some speaking both inter‐
nally and externally. Finally, I was active in our women in tech group,
which allowed me to form connections with various people through‐
out engineering.

Finally, opportunities. These can look vastly different as well. For me
there was one in particular that was really helpful ‐ I joined our API
standards committee. I was actually a bit hesitant to do so at first be‐
cause I didn’t think I was an expert at APIs, but after reading a few
(short) books on REST, along withmywork on various APIs previously,
I had a pretty solid grasp. The powerful thing about this group is that
it cross‐cut many teams in engineering, which gave me a chance to
work with a lot of different engineers (and gaveme that visibility I just
mentioned). It also allowed me to have something clear to point to in
terms of influencing others and being someone who fights for quality.
Our projects there had broad impact across engineering and allowed
me to think about something (our API, in this case) holistically.

There is a popular idea that becoming a Staff Engineer requires com‐

252

pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

I actually didn’t really have a Staff Project. At the time that I was pro‐
moted, I had transitioned back from management around 6 months
prior, so I referenced someofmy timemanaging for leadership. At the
time, I was leading (from the technical side) the very small Box team
ona cross‐company collaboration project, which involved understand‐
ing another company’s development team’s requirements and figuring
out how to build as little as possible while meeting their needs. I was
a member of an engineering‐wide API working group responsible for
establishing andmaintaining our API standards and I had several side
projects going on. I would say that all of these contributed to various
parts of my promotion and together helped me establish that I could
demonstrate all aspects of what they expected.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you? Is there an easier path to Staff that you could
have taken?

One piece of advice I got at some point was to amplify my strengths.
All of us have strengths and weaknesses and we spend a lot of time
talking about ‘areas of improvement.’ It can be easy to feel like the best
way to advance is to eliminate all of those. However, it can require a
lot of work and energy to barely move the needle if it’s truly an area
we’re weak in. Obviously, you still want to make sure you don’t have
any truly bad areas, but assuming you’ve gotten that, instead focus on
amplifying your strengths. How can you turn something you’re good
at into your superpower? The other thing to think about is how can
you use something you’re good at to compensate for something you’re
weak at? For example, I’m a giant introvert and don’t particularly like
mingling with people I don’t know. I’m terrible at networking with
strangers. However, I’m good at writing and enjoy doing it. I’ve used
writing onmy public blog to meet people I wouldn’t otherwise and get

253

exposuremore broadly. In fact, I’m sure I’ve gotten farmore from that
than I would have by going to many, many meetups.

The other more tactical thing that comes to mind is directly related to
the process we have at Box of writing a promotion case. A few things
were suggested to me ‐ first to write the promotion case well before I
was sure I was ready for the promotion. This allows you to see where
there might be gaps and can give you very tangible things to work on.
(Or maybe you’ll be surprised and realize that you’re ready for promo‐
tion before you thought you were). The second is to be very aware
of where those gaps are. When a promotion committee is reading
through promotion cases, all of the cases are going to be very posi‐
tive. No one says anything negative when they go up for promotion.
So instead of looking for negative things, that committee is going to
be looking for what isn’t said. Where are the blank spots? What seems
to be avoided or talked over. Take a look at your case from that light ‐
what thingsmight bemissing? What things are you brushing over? Be
sure to work on those. Finally, tell your story.

Our promotion cases had templates with pointed questions, but, es‐
pecially at the higher levels, everyone isn’t the same, nor do we want
them to be. Instead of just answering the questions, think first about
what your strengths are. What are your superpowers? What is your
story? Then figure out how to fit that story into the prompts. You’ll
have a much better overall case if you include your best strengths in
it.

It’s possible that if I hadn’t taken a meander through management, I
would have gotten to Staff sooner. That said, I don’t regret doing it
and I learned a lot about how people think, how organizations are run
and how larger projects are prioritized. All of these have continued
to help me do my job on the IC track and likely helped me further get
promoted to Senior Staff. While I do think it’s distinctly possible that
it slowed down when I got to Staff, I’m actually less sure for the next

254

level ‐ I think there’s a real chance Iwould have hung out at Staff longer
without it. All of this is to say that even though I didn’t take the most
direct route, I still learned a lot that has helped me out long term.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

The more senior you get, the less your job is about code. Sure, un‐
like a people manager, you still have a very technical slant and even
through principal, you’ll likely be doing at least some coding. How‐
ever, the higher you get, the more your job becomes about mentor‐
ing and growing the people around you (and more broadly), building
your team through building your company’s public tech brand, notic‐
ing larger technical trends that can be improved upon or corrected,
helping to set the tech vision for your team or the company and advo‐
cating for resourcing for tech debt projects. It becomes much more
about seeing broader things and getting others on board. Suddenly,
communication, leadership and persuasion are even more important
than they were previously.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

I actually managed for about a year and a half in the middle of my
time at Box and found that I hated it (you can find more about that in
my blog post on that topic). That said, I found that there is actually a
lot of overlap between management and staff+ roles in most compa‐
nies. Both roles require mentoring others, leading and the ability to
persuade people. They require thinking bigger and more attention to
longer term ‐ both in terms of technologies and people. While I don’t
plan to go back to management, I did learn a lot during my time man‐
aging and the experience has actually helped me as I’ve advanced to
Staff and beyond.

What are some resources (books, blogs, people, etc) you’ve learned

255

https://code.likeagirl.io/why-i-left-management-the-engineering-technical-track-vs-management-track-abef5b1d914d
https://medium.com/box-tech-blog/no-regrets-my-time-in-management-wasnt-wasted-140b40ded0e6
https://medium.com/box-tech-blog/no-regrets-my-time-in-management-wasnt-wasted-140b40ded0e6

from? Who are your role models in the field?

I don’t tend to follow any particular person, but instead learn fromand
find inspiration from almost everyone around me. I’ll list a few here,
but in all honesty, Iwould say that I’ve learned fromcountless different
people at all levels (including many more junior than myself).

I had a manager who every time I came to him with a problem, he
would always turn it around onme and askmewhat I thought I should
do. This got to the point where I could hear him tellingme to give feed‐
back to someone directly or telling me to figure out how to fix some‐
thing without me ever having to talk to him. He really taught me that
while, as a manager, he was willing to support me, I would learn the
most and be the best version of myself if I could do it on my own. He
taught me to take responsibility for everything.

As a counterpoint, I would alsomention a principal engineer I worked
with, who later taught me that I didn’t need to try to do everything my‐
self. After I learned to take responsibility, I started to forget that I
wasn’t alone. Of course I had heard people talk about delegation, but
it’s one thing to hear about it or think about it in terms of sprint tasks,
but it’s another to delegate getting something prioritized or delegate
figuring out tech vision for a team or delegate following up on an ini‐
tiative.

There was another co‐worker that I worked with who would drive me
completely bonkers sometimes because her approach to solving prob‐
lemswas so different frommine. She would ask for clarification when
I thought it was obvious and she would ask for detailed explanations
when I thought everyone was on the same page. However, she’s also
one of the smartest engineers I’ve ever worked with and working with
her made me realize that not only can different styles be just as good,
but that sometimes putting together two clashing styles can result in
much better results than either of us would have gotten on our own.

256

She found holes in things I thought were obvious and while she drove
me nuts sometimes, we got some amazing things accomplished and I
am better for it.

257

Damian Schenkelman - Principal Engineer at Auth0

August, 2020 blog, twitter, linkedin

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do.

I’m a Principal Engineer at Auth0, an Identity as a Service platform. I
work in the Systems Architecture group, which today has three Prin‐
cipal Engineers. We work with different teams on strategic initiatives
and also shape Auth0’s technical strategy, architecture decisions, and
guidelines.

At the timeofwriting, I amworkingwith a groupof Identity andAccess
Management (IAM) teams as a tech lead of a large newproduct feature,
as well as driving reliability and scaling related initiatives with other
teams.

What does a “normal” Staff‐plus engineer do at your company? Does
your role look that way or does it differ?

Within Engineering, we are organized in domains (today Identity &Ac‐
cess Management, Developer Experience, Service Management, and
Platform). Auth0’s Staff Engineers are people that can technically lead
teams within a domain. A Staff Engineer would typically be part of a
single team in a domain, while also being able to actively contribute
to initiatives across the scope of a domain.

Principal is the next level in our ladder. Principal Engineers can ei‐
ther be in a specific team (depth) or work with multiple teams and
their scope spans the entire organization (breadth). Today I am oper‐
ating in “breadth mode”. This means both working on specific initia‐
tives and also the definition of technical strategy, technology choices
for our Platform, and leading the Design and Architecture workgroup
(a.k.a. DNA).

DNA has 6 members (3 permanent Principal, and 3 Staff/Senior II that

258

https://yenkel.dev
https://twitter.com/dschenkelman
https://www.linkedin.com/in/damianschenkelman/
https://auth0.com/
https://yenkel.dev/posts/achieving-alignment-and-efficiency-through-a-technical-strategy
https://auth0.com/learn/cloud-identity-access-management/
https://auth0.com/learn/cloud-identity-access-management/

rotate every 6 months). The workgroup defines decisions and guide‐
lines to help drive Auth0’s technology in a specific direction (e.g. avoid
language proliferation sowe can build libs once and people can switch
teams easily) and also collaborate with teams in technical reviews of
large initiatives.

The biggest way in which my role differs, because I have been at the
company for 6+ years, 3+ of those as a Director of Engineering, is that
I have the “broadest scope”. I work with both Product and Platform
teams on initiatives and also work often with other parts of the com‐
pany: joining conversations with high profile prospects, working with
our legal team on contract language, or collaborating with Marketing.

How do you spend your time day‐to‐day?

This varies a lot :). A typical week involves a lot of meetings, so I am
trying a new thing: groupingmeetings onMondays, Wednesdays, and
Fridays. Thursdays are completely blocked, and Tuesdays are only for
urgent matters. Because we are remote all meetings are over Zoom.

On meeting days I have recurrent: ‐ 1:1s: to catch up with my man‐
ager (VP of Engineering), or a team manager or tech lead. Those con‐
versations are great to stay up to date with them and know their chal‐
lenges. I feel being too detached from that would impact my ability to
get things done effectively. ‐ team meetings: Engineering leadership,
Design & Architecture workgroup.

Non‐recurrent meetings also take place. Some example topics might
be: ‐ specific initiatives I am tech leading ‐ helping a group of teams
figure out how to get something started ‐ doing a sync design review

On Thursdays (and as much of I can on Tuesdays) I spend my time
thinking about: ‐ current initiatives and how they are going ‐ what we
could/should be doing in the future (next quarter, next year) ‐ writing
docs, guidelines, blog posts ‐ (not often) doing POCs and/or writing
small tools

259

Where do you feel most impactful as a Staff‐plus Engineer? A specific
story would be grand.

The biggest impact comes from being able to help achieve “people
scale”, positively influencing the work of as many people as possible
internally. The book Scaling Up Excellence provides an easy to un‐
derstand analogy: scaling is a ground war, not a one‐off airstrike. It
requires a lot of time, and patience but to get to your goals you need
to align the whole company in terms of goals and how to get to them.

As a Principal Engineer, I try to find opportunities/gaps that I believe
will set a direction for as many people as possible in the long term.
There’s a lotmore value to align the ~200 peoplewehave in our Product
Delivery organization around a certain topic than to code a solution for
a problemmyself. The former has more impact, it scales better.

Canyou thinkof anythingyou’vedoneasa Staff‐plus engineer that you
weren’t able to or wouldn’t have done before reaching that title?

Before becoming a Principal I was a Director of Engineering at Auth0.
The most interesting thing is that as a Principal Engineer people get a
lot less defensive when I provide feedback and they seem a lot more
open in 1:1s. I think it might be related to the fact that as a Principal
Engineer you are not “representing a part of the organization”.

In that regard, being an individual contributor feels a lot better.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change? What’s something you’ve advocated for? Can you
share a story of influencing your organization?

A common problem for fast‐growing companies is that there’s usually
some “lack of clarity”. In our case, there was a lot of confusion about
whatwas coming in the future and thatmade us slow and inefficient in
making technological decisions. Teams were uncertain if they should
be using a particular technology because they didn’t know if that tech‐

260

https://www.amazon.com/dp/B00EGMQIDG/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

nology would be supported in the future, they were uncertain if they
should be building a particular product in a certain way because they
didn’t know if that approach was aligned with our long‐term technical
strategy, etc. Naturally, this caused a lot of inefficiencies.

We believed we needed a long‐term direction that explained how to
approach the technical implementation of problems today and how
to bridge the gap between our initial situation and the future vision.
More precisely, we needed a documented technical strategy that
would detail what we should and shouldn’t be doing to be successful
in the long run.

After talking to a great number of people I learned that all of them
have been exposed to inconsistent information, and rumors, which
made them afraid of making decisions, e.g.: “I heard the company
is going for X in the future” or “I heard this particular technology Y
is not going to be supported by our platform teams”. A lot of confu‐
sion was caused by a particular rumor that we were going to support
a certain customer need and its technical implications. People kept
hearing about it, but concrete plans were never announced. I wrote
down these issues, connecting all the dots and aiming to translate that
information into knowledge. I realizedwe needed both short and long
term ways of solving the problem.

261

Short term: We had to fill the gap of uncertainty relating to some
more urgent and short‐term matters. Teams needed to make techni‐
cal decisions and couldn’t wait for a full‐fledged technical vision and
roadmap. We also realized that once we had that long term vision and
decisions, there would naturally be the need to review decisions for
specific exceptions. I put together the “design and architecture” (DNA)
group, which also wrote guidelines and recommendations, including
“approved” technology choices, to guide teams towards independent
decisions that don’t require review, and also established an RFC re‐
view process.

Long term: I came up with a set of topics that I believed the company
needed to make decisions about. I tailored my presentations to suit
two different audiences – executive and technical. For the executive
audience, I developed a succinct presentation, applying non‐technical
analogies and explanations, and providing actionable solutions. The
technical presentation was much more detailed and included many
technical terms. I used nemawashi (an informal process of quietly
laying the foundation for some proposed change or project, by talk‐
ing to the people concerned, gathering support and feedback, and so
forth) and shared with my VP of Engineering, other execs, my peers,
and other senior leaders through to get buy‐in before formallymaking
a decision. More specifically, I approached people asking them for
their thoughts and opinions securing the buy‐in, so that by the time
wemet to discuss our decisions, it wouldn’t be the first time they were
seeing the ideas. We finally met, discussed tradeoffs, and arrived at a
set of decisions. All decisions were documented in a decision log and
we committed specific owners – in writing – to carry them forward.

How do you keep in touch with how things really work as you spend
less time on hands‐on development?

There are two aspects of this, keeping up with technology in general
and keeping up with what goes on at Auth0 and the current “state of

262

https://en.wikipedia.org/wiki/Nemawashi

affairs” in Engineering teams.

These are the things I do to keep in touch with things related to Auth0:
‐ Internally: keep an ear to the ground both through Slack and having
1:1s with some tech leads and Engineering Managers. This helps me
understand what challenges they are having first hand, and also find
patterns or arrive at global solutions instead of local ones. ‐ Externally:
talk with customers/prospects to see how they use the product, read
tweets and news, etc.d mentioning Auth0 and the identity space.

I don’t feel I am “keeping in touch” asmuch as I’d like technology‐wise,
but I do try to :). So many new important new things are happening in
our industry every month that it is hard to keep up. Accepting the fact
that meetings and not being hands‐on means that I will likely be less
in touch than I’d like with things is important. Once I accepted that I
could start prioritizing what was valuable.

I read books, carve out time to do some POCs or read blogs/papers
about specific topics, and ask to lead specific initiatives to stay up to
date with how we are developing even if I don’t code that often.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

Yes, a lot! I am a member of our Engineering Leadership team. We
meet twice a week to discuss topics around the organization. This, to‐
gether with keeping an ear to the ground, and being part of meetings
about mid‐term plans helps me know about (and sometimes propose)
opportunities that might be available ahead.

Whenever that happens I typically propose the names of people that I
believe would benefit from that opportunity, explain why I think they
would be good at it, and, if helpful, offer to mentor them in case there
are any perceived skill gaps.

You first got the title Principal Engineer at Auth0. Were you hired as a

263

Principal Engineer? If not, what was the process of getting promoted
to Principal?

My story here is a particular one. I started at Auth0 in May 2014 as the
fifth engineer, ~tenth employee. There were no titles, no ladder, noth‐
ing like that. Around 2015, I started mentoring and doing 1:1s with a
couple of new hires. Towards the end of 2015, I was working on my
initiatives, and also leading others, helping with hiring, etc. Late 2015
MatiasWoloski, Auth0’s CTOand co‐founder, was looking for someone
to lead Engineering teams and he asked me if I would be a Director of
Engineering.

I’ve been privileged enough to be able to approachmy career in a way
that maximizes learning and opportunities for hard problem‐solving.
That’s the main principle that helps me make decisions. When he of‐
fered me, a 25 year old living in Argentina, the opportunity to lead
the Engineering organization for a “Silicon Valley”, remote‐first com‐
pany that was growing exponentially I naturally said “yes”. I had never
thought “I want tomanage”, it just happened because Iwanted to learn
and solve hard problems.

264

https://twitter.com/woloski

Things worked out great. I learned a lot about building teams, organi‐
zations, leading people, etc. Because I was one of the first engineers,
had built a lot of the systems and I enjoyed technical conversations I
also did a lot of technical leadership in that role, both with Product
and Platform/Infrastructure teams. Towards early 2019 as a Director
of Platform, I started thinking that I was not learning as fast as before
and that I wanted a broader scope than just working on our platform.
After many conversations with Christian McCarrick, Auth0’s VP of En‐
gineering at the time, I realized that the challenge I wanted to take up
next would be being one of Auth0’s technical leaders. I transitioned to
Principal Engineer in August 2019.

What two or three factors were most important in you reaching Prin‐
cipal? How have the companies you joined, your location, or your ed‐
ucation impacted your path?

A quote I love from Seneca is “Luck is what happens when preparation
meets opportunity.”. Getting to Principal required getting some things
right, but also a lot of luck. I want to call out some of the key factors

265

https://twitter.com/cmccarrick

that got me to Principal and also show how luck played a part in them.

First job

In Argentina it’s common to start working while you are in University.
When I finished high school I found a job at a fantastic company called
Southworks. The two key things about that place were that:

• the company worked on projects with cutting edge technologies,
which gave me lots of opportunities to hone my learning skills

• the company worked mainly as a Microsoft US vendor remotely,
which meant that not only technical skills were valued, but also
we got to practice communication, expectation management,
and other interpersonal skills often.

The reason I could work in software right out of high school was that
when Iwas 11 I started tellingmymomIwanted to “build video games”
and my parents found and paid for a high school that taught program‐
ming.

How luck played a part: I was about to take a job at another company
when a friend of mine from high school told me her brother worked
at Southworks and they were looking to hire junior people. He did
a good job selling the company to me and I decided to put the other
opportunity on hold to see if I could get into Southworks.

Auth0

I was one of the first engineers at Auth0 and over the years I worked on
many parts of its product and infrastructure, which makes it easy for
me to help people and provide valuable input on various topics. Be‐
ing a Director of Engineering also helpedme understandmany things
about our business that help me be a more effective contributor.

How luck played a part: the success of any startup requires a lot of
luck at many different points in time. If Auth0 had not grown as it did,
I wouldn’t have had the opportunities to learn what I did and be where

266

https://www.southworks.com/

I am. This is particularly important because I live in Argentina where
the Software industry is much smaller than it is in the US and most
companies don’t have dual tracks.

Team sports

I played basketball as a kid and during my teens and I realized early
on it felt a lot better to win by scoring any amount of points than to
lose scoring lots of points. That shaped how I worked in two ways: ‐ it
led me to help teammembers often to see how we could succeed as a
team

• it led me to learn and do things that would be required to “cover
gaps”, which helpedmebuild leadership and interpersonal skills
that are very useful as I grew in my career

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

I did not. Because of how I grew at Auth0 I kind of “skipped that
part”. As a Director at a startup, I got the opportunity to technically
lead a lot of big, critical initiatives, but there was no specific/explicit
“staff/principal project”.

I think implicitly the closest thing to a “Staff Project” was the work I
led in 2017 & 2018 to increase the reliability and scalability of Auth0,
leading some projects to offer higher SLAs for a subset of our key cus‐
tomers.

What piece of advice do you have for someone who has just started as
a Staff Engineer?

Staff means different things at different places, so the first piece of
advice I would give is to talk to as many people as possible to define
expectations where they are.

267

The next thing I would tell people is to be patient. They probably got
to where they are because they are fairly technical and got results, but
as you grow in the ladder the outcome of your work takes time to de‐
velop. You might be working on more things at once, and the impact
of themhas a longer time horizon. You are also now influencingmore
people in different roles, and sometimes it takes them longer to “see”
the things that you might see clearly. Being patient, progressively in‐
fluencing people, and teaching others pays off long term.

Finally: get used to writing things down and repeating them to others.
Writing down thoughts, plans, reasoning, and standards is theway you
will scale yourself. When you document something you make it easy
for anyone to access it and read in the future, it is easier to reference.
It is a lot better than “just talking about it”: it scales better and it also
reduces the chances of things beingmisunderstood. Repetition is also
necessary as just publishing written documents is not useful, so you
have to share your ideas with people. Hosting AMAs, brown bags, and
other sessions to explain what your thoughts are very valuable.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

I wasn’t planning for it, but when the opportunity came to be Direc‐
tor I took it. However, my thinking is that there’s a pendulum where
you can go back and forth between the two paths. How easy it will
be will depend on the company and how specialized the skills as a
Staff/Principal are, but I think it is possible.

Nowadays I am very interested in continuing to develop my technical
skills and leadership skills, as that’s what I think will bring the most
valuable learnings and challenges.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

I try to follow people on Twitter who I think are doing interesting

268

https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/

things and from who I can learn. There are so many people doing
interesting things and so much to learn! Some of the names that
come to mind: ‐ Aphyr’s work with Jepsen and general content
about distributed systems is great. ‐ Tanya Reilly has some very
good content like RFC process @ Squarespace and Being Glue. ‐
David Fowler shares a lot of content about the .NET Framework and
ASP.NET internals which I find interesting. There’s also this video of
him sharing how he became the ASP.NET Architect. ‐ At Auth0 I work
with Jon Allie who is a fantastic engineer and person. He strives for
simplicity, can explain things very clearly, and is extremely humble
considering howmuch he knows.

I haven’t found a lot of books or similar content specific to senior “in‐
dividual contributors” (might be interesting to write one). I recently
read Fundamentals of SoftwareArchitecture that does a fairly good job
at describing that role while also understanding the nuances and gray
areas of it.

Some books aboutmanagement are useful to get organizational aware‐
ness and help with mentoring, 1:1s, hiring which are things one typi‐
cally helps with as a staff‐plus engineer. In High Output Management
AndrewGrove refers defines the “know‐howmanager” as “peoplewho
may not supervise anyone directly but who even without strict orga‐
nizational authority affect and influence the work of others”, which
sounds an awful lot like staff‐plus engineers. I strongly recommend
Managing Humans as it shares stories that are easy and fun to read,
and also helps generate empathy with managers, which is important
as a staff‐plus engineer. The 7 habits of highly effective people is also
a book that has a lot of good lessons for staff‐plus engineers.

Accelerate is another great book that helps tie company success to en‐
gineering practices and outcomes in a way that is useful to influence
stakeholders, especially at an executive level.

269

https://twitter.com/aphyr
https://jepsen.io/
https://twitter.com/whereistanya
https://engineering.squarespace.com/blog/2019/the-power-of-yes-if
https://www.youtube.com/watch?v=KClAPipnKqw
https://twitter.com/davidfowl
https://channel9.msdn.com/Shows/Careers-Behind-the-Code/Becoming-the-ASPNET-Architect-with-David-Fowler
https://www.linkedin.com/in/jon-allie-b250296
https://www.oreilly.com/library/view/fundamentals-of-software/9781492043447/
https://www.amazon.com/dp/B015VACHOK/
https://www.amazon.com/Managing-Humans-Humorous-Software-Engineering/dp/1484221575/
https://www.amazon.com/dp/B00GOZV3TM/
https://www.amazon.com/dp/B07B9F83WM/

Dmitry Petrashko - Tech Advisor to the Head of Infra at Stripe

May, 2020 presentations, twitter, linkedin

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do. I am a Staff
engineer and the Technical Advisor to head of Infrastructure at Stripe.

My current team is all of Stripe Infrastructure, which is responsible for
foundational infrastructure services at Stripe ‐ Compute, Networking,
Storage, Database, Data Engineering, Performance & Efficiency, Ob‐
servability Services, and Developer Tools. Our work empowers Stripe
engineers to focus on product.

The team that I “grew” fromwas Developer productivity, which builds
processes, tools and core libraries used during product development
at Stripe, including testing frameworks, linters, typecheckers, build
tools, libraries used for gradual rollout, and many others. I started as
engineer on that team(while it was still a singular team), eventually
becoming a Pillar Tech Lead of that group.

What does a “normal” Staff‐plus engineer do at your company? Does
your role look that way or does it differ?

A Staff Engineer at Stripe isn’t a role, rather it’s a level that corresponds
to expectation of impact, communication, people and project leader‐
ship skills. Staff engineers fill different roles, mine is a current one
is Technical Advisor(TA). In that role I partner closely with the Head
of Foundation, Rahul Patil, with the goal of researching critical top‐
ics ahead of time, diving into critical issues (design, code, analytical),
brainstorming technical action items, assisting with urgent technical
follow‐ups, instrumenting code for data collection, etc. This role is de‐
signed to expand Rahul’s bandwidth and strategic thinking, but does
not dirrectly make technical decisions.

As a stepping stone to that role, I was also a Pillar Tech Lead. As we

270

https://d-d.me/site/presentations/
https://twitter.com/darkdimius
https://www.linkedin.com/in/darkdimius/

havemore PTLs, the expectations are better defined: * PTLs help their
teamsmake technical decisions that will playwell with each other and
with technical decisions made by other groups at Stripe. Teams at
Stripe make most technical decisions themselves, but an experienced
PTL can help fine tune those decisions to achieve better outcomes.
PTLs alsowork as arbiters in caseswhere teams cannot reach an agree‐
ment amongst themselves on technical topics. * PTLs guide the tech‐
nical direction of Stripe, providing input on what are the most impor‐
tant problems to solve and setting the high level technical approaches
to solving them. * PTLs help their organization by representing it to
other Pillar Tech Leads and also bring technical decisions made else‐
where back to the teams they work with to create alignment. * PTLs
create opportunities for other engineers to take on impactful projects
and help them succeed.

In the PTL role, I used to partner closely with the Head of Devel‐
oper Productivity and managers of the teams inside the group. We
exchanged context and worked towards an agreed goal.

Both of these roles(PTL and TA) are similar in that they partner with
engineerign manager and share insight into the needs of our users &
tools at our disposal to address them, while the EM has a better un‐
derstanding of Stripe‐wide non‐technical constraints(e.g. resourcing
constraints).

How do you spend your time day‐to‐day?

On a perfect week I’d spend Monday, Wednesday and Friday in meet‐
ings or working groups: either 1:1’s or team meetings, collaborating
on plans & strategy, both short term and long term. Tuesday and
Thursday of my perfect week would be spent coding alone. In reality,
depending on team needs at the time, I may end up having more
meetings or more time coding. If I’m working to set up a new project,
I’ll commonly start by having a week with less meetings: focusing on

271

project briefs, thinking through design, deliverables/milestones and
security/reliability implications; followed by a week of socializing the
proposal around the company and addressing feedback.

While, from time to time it might seem hard to find time to write
code, I believe it’s important as it allows me to maintain a strong
connection to engineering and be the bridge between business
needs/prioritization and engineering constraints that PTLs need to
be.

Where do you feel most impactful as a Staff‐plus Engineer?

Staff Engineers, and Pillar Tech Leads in particular, frequently help
set direction for a new project. I feel particularly impactful when I
can help improve a proposal that’s well intentioned and solves a real
need, but the team that drafted it lacks either experience or context
to write a good plan to capture the opportunity. In such cases, having
a well structured plan can help substantially reduce the scope while
getting to most of the value, and thus demonstrate impact sooner. Or,
alternatively, see that the proposal in hand addresses more use cases
than the team has originally anticipated and refocusing the project to‐
wards a usecases that was not known by the teamwould lead to bigger
business impact: in both of these cases, I feel impactful by empower‐
ing other engineers.

Canyou thinkof anythingyou’vedoneasa Staff‐plus engineer that you
weren’t able to or wouldn’t have done before reaching that title?

No, Stripe intends the Staff‐badge to not be a gate into new opportu‐
nities and I believe we’re good at it. This is also true about the PTL
role. We choose enginers for PTL position that are good at represent‐
ing opinions of others. Even before I became a PTL I felt that prior
PTL, Paul Tarjan, always made sure my perspective was presented.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change? What’s something you’ve advocated for? Can you

272

https://paultarjan.com/

share a story of influencing your organization?

I was hired specifically to introduce typechecking into Ruby at Stripe.
This included, together with Nelson and Paul, architecting and imple‐
menting the typechecker, Sorbet, and growing the culture around us‐
ing it.

In the early days of Sorbet, we’ve carefully chosen what features to
add based on usecases that Stripe needs the most. I believe we’ve suc‐
ceeded in coveringmost of usecases that Stripe had with a typesystem
and, at the same time, keeping the simplicity: it’s very easy to get to a
typesystem and culture that promotes complexity and elitism for sake
of it and I’m happy that our efforts avoided swinging from untyped‐
ness to the other end of spectrum.

Today, inmy role as Technical Advisor, I advocate for changes that will
have outsized impact, most commonly in terms of Reliability, Scalabil‐
ity, Security and Productivity at Stripe. That can be changing the way
data is sharded/stored, or changing the way we address change man‐
agement. The big difference though is that unlike in Sorbet where I
stayed on project for years, I’d be looking to find/grow a person who’ll
take over the project pretty soon ‐ after organization is bought in, and
there’s a planwithwell articulatedmilestones and controlled risks. I’ll
keep having frequent checkings with people driving these important
projects with goal to help mitigate these risks and discover opportuni‐
tites to deliver the project faster, and thus my involvement is visible
only in early stages of project.

How do you keep in touch with how things really work as you spend
less time on hands‐on development?

While I was a PTL, I had a least a couple of days a week where I got
code. I worked closely with other engineers on my teams and we con‐
tinuously learn from each other.

As a Technical Advisor, I wasn’t able to write code as much as I was as

273

https://nelhage.com/
https://paultarjan.com/
https://sorbet.org/

a PTL. I mostly wrote code when it was code‐yellow situation. But the
success in this role is dependent on having good insignts and deep en‐
gineering understanding. To do this, I speak to our internal customers
and stay on top of designs and, notably, failure thresholds and failure
modes of systems of teams that I support.

In my role, it’s highly important to understand needs of customers.
One helpful resource for that is the Stripe‐wide engineer survey that
Developer Productivity group organises, where we are looking to find
what are the biggest things keeping our engineers from being produc‐
tive: maybe there’s some tool that became slow since the last survey
or some use case that had a user base grow that’s not well supported.
While this survey rarely finds things that we weren’t aware of, it’s a
great tool for relative prioritization: we can compare how many peo‐
ple complain about things and prioritize them accordingly.

Additionally, before Covid‐19‐induced lockdown, I used to join ran‐
dom tables for dinners at Stripe. I’d ask 3 questions:

• What are you working on?
• What makes it hard?
• How can infrastructure teams help?

This became a great tool in two ways: 1) connecting me to my users,
helping discover their needs; 2) helping mitigate unhappiness of
teams that aren’t yet supported by having a discussion similar to: “yes,
I agree we could help you by doing X, now, lets together look on what
we should stop doing to create place for this”, where a person would
frequently discover that, while they would like us to address their
pain point, they don’t want it addressed at cost of us deprioritizing
our current projects.

As I was transitioning away from role of PTL, I’ve created a group
that’s currently called DevProd Assembly that gathers leaders of de‐
veloper productivity teams. Eachmember of this group is expected to

274

build a high trust relationship with 2‐3 product teams, interview them
monthly and aggregate feedback with other members of Assembly.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

While sponsoring other engineers isn’t required for a Staff Engineer, I
believe it helps to succeed as one, as it helps you deliver more impact
by creating opportunities for others and helping them succeed.

And yes, there have been multiple projects that I have helped scope,
kick‐off and derisk, while also helping grow a person to take it over
fromme when I roll off to the next thing.

There’s also a distinction between mentorship and sponsorship and I
do both. Mentorship is about helping people grow and deliver impact.
Sponsorship is about helping a person get in a position where they
could demonstrate their ability to deliver greater impact. In working
with my teams, I try to help people work on projects somewhat out
of their comfort zone, and in that I sponsor them, and then, I could
mentor them to help the project succeed.

You first got the title Staff Engineer at your current company. Were
you hired as a Staff Engineer? If not, what was the process of getting
promoted to Staff?

I wasn’t hired as a Staff Engineer. I had to get uplevelled twice to get
to Staff level at Stripe. Both of these uplevels were similar: Stripe up‐
levels after an employee has already been operating on the next level
for quite a while and this adjusts expectations that they are expected
to continue operating on that level going forward.

What two or three factors were most important in you reaching Staff?

In order of decreasing importance:

1. Focusing on impact on business and company.

275

2. Being collaborative: by joining meetings/working groups you
should help achieve a better outcome.

3. Technical knowledge.

For me personally, the area that I needed to get good at before getting
Staff Engineer was the second item. I was already delivering impact
and was considered a person to go to for technical advice. I needed
to improve my communication skills and collaboration skills so that
I could constructively help people who are outside of my team, who
might see me for first time ever and who, despite having good inten‐
tions behind their project, may not have the best plan to get it deliv‐
ered.

Technique that helped me in that was asking for feedback in private
chat immediately after the meeting, in particular after meetings that
didn’t not go perfectly. This has allowed me to learn what I did that
might have contributed to other parties not feeling comfortable in
these meetings and, in a few cases, the genuinity of asking for how it
could have gone better helped fix the outcome of a meeting that has
already gone poorly.

Howhavewhere youworked and your education impacted your path?

Companies: I appreciate that Stripe has somany opportunities for im‐
pact and this definitely helped me.

Education: I happened to have got a very practical PhD (on how to
build fast & maintainable compilers) that almost fully translated to
knowledge that’s applicable to my work: helping a company to scale
engineering. And, while it served me well, I think there’s a lot of luck
involved: I happened to join the right lab at the right time (when
conditions for Scala3 being born became material, I’d been at the
lab long enough to not be too “green” but still early enough to not
have totally set the direction of my research). I’m unsure if I’d advise
others to do a PhD: from my perspective, in practical terms, many

276

of my friends would have learned as much by building systems at
Stripe/Google/Facebook for the same 4+ years it takes to complete a
PhD. If you’d like to learn how databases work ‐ you’d probably learn
this not only at the laboratory that does research on databases, but
also at the companies that have some of the highest demands for
databases and have teams working to improve them. That said, PhD
was something that was a good tool for me to change my location.

Location: I came to the US from Switzerland to join Stripe. I came to
Switzerland from Russia to join one of the best PhD programs in Com‐
puter Science. I came to Russia to join one of the best ex‐USSR uni‐
versities from Ukraine. In each of these relocations, I feel, I played
geographical arbitrage: I was looking to escape the place where I was
among the best to the place where I’d be average. In some of them, I
think I wasn’t the prime candidate. By joining the people there and
learning from them, I grew a lot. It’s hard for me to tell if US vs EU is
a better location career‐wise, but I can definitely tell from my experi‐
ence that changing locations helped me grow a lot.

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

It’s a very hard question for me to answer in retrospect. This is be‐
cause: AFAIK Sorbet was big enough to be my Staff engineer project,
BUTwithNelson and Paul being there and usworking closely and very
fast with each other, it was very hard to attribute success of the project
to specific individuals rather than the whole team.

Around the first performance evaluation into the projects, all three of
us got feedback that we should have better ways to prescribe which
impact was the result of which individual. While I’d love to say that
the fact that we didn’t face similar issue on the next performance eval‐
uation was due to intentional actions, I don’t think that is true: I think

277

the project just naturally entered a stagewhere it wasmuch bigger and
thus we didn’t need to “quickly iterate in the same 10 files”, naturally
leading to us having clearer and bigger areas of ownership.

I became the “internal architecture/subtyping” person, as well as “talk
to users” person, while Paul became the “change the code to make
typechecker like it” person. Nelson clearly knew better how other
systems at Stripe work and thus helped integrate the tool with them.
All of these played to our strong points: I had prior experience with
type checkers (this is what my PhD was about), Paul has a huge skill
for programmatic codemods and Nelson is both very knowledgeable
in systems in general and has been at Stripe long enough and early
enough to know pretty much every system at Stripe. At this point in
the project (stabilization, rollout) all of these became huge areas and
thus it becamemuch easier to have a person be a directly responsible
individual (DRI) for an area, with others helping occasionally.

After Sorbet I had a couple other impactful projects delivered in short
timeframe (6months), that, I believe, sealed the deal ofme getting the
Staff Engineer level, but, If I was to choose one, I’d still choose Sorbet
due to vast scope of project: both technical and cultural.

Can you remember any piece of advice on reaching Staff that was par‐
ticularly helpful for you?

1. Working with Martin Odersky and Ondrej Lhotak in academia
helpedme understand how complex systems work together and
how to explain that clearly.

2. Brian Goetz helped me understand how much work is behind a
simple, yet, robust to withstand widespread adoption, design.

3. Paul Tarjan showedme the importance of adjusting my commu‐
nication style to lead to constructive outcomes for all involved
parties.

Whatabout apiece of advice for someonewhohas just startedasa Staff

278

Engineer?

At least, at Stripe, Staff Engineers work on very different areas. Make
sure you agree with your reporting chain on what is the impact you
should be achieving andwhat are the things you’re allowed to compro‐
mise on on theway to that impact. Communicate clearlywhat compro‐
mises you’re doing and why.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

Every time I considered it in the past itwas by askingmyself andothers
aroundme “would it be away to bringmore impact”. So far, every time
the answer was “seems like no”.

That said, I’ve found that learning somemanagement skills from great
managers(in my case, James Iry, Scott MacVicar, Will Larson, Chris‐
tian Anderson and Shane O’Sullivan) provides huge benefits even in
IC role.

279

StephenWan - Staff Engineer at Samsara

September, 2020 github, twitter, linkedin

Tell us a little about your current role: where do you work, your title
and generally the sort of work do you and your team do.

I’m a Staff Engineer at Samsara.

I started at the company four years ago when the company had been
around for a year andwehadfiftyor so employees. Nowadays, wehave
over a thousand folks at the company, with engineering teams in the
Bay Area, Atlanta, and London.

When I first started, we had yet to form real teams and our ten or so
engineers worked on whatever came up. Ninemonths in, we had dou‐
bled up and formed product teams around a few core offerings at the
time. I did a brief stint leading a product team before switching over
to our budding infrastructure group to start our frontend infrastruc‐
ture team. Over the years, I’ve gradually shifted down the stack, also
taking stretches on our backend and observability systems.

Today, I work in our Infrastructure & Platform (I&P) group, spending
most of my time with the Developer Experience team which builds
tools to keep our full‐stack development workflow productive.

What does a “normal” Staff‐plus engineer do at your company? Does
your role look that way or does it differ?

Most of our Staff+ engineers are in specialized roles, either in web in‐
frastructure or device firmware. I suppose that puts me in the major‐
ity, but the work our Staff engineers do is varied so it’s a bit hard to
claim being “normal” in the role.

When looking at parallels between the IC and management tracks,
Staff is considered a director‐equivalent role. Staff engineers have the
option to participate in many processes that are typically reserved for

280

https://github.com/stephen
https://twitter.com/stpnwn
https://www.linkedin.com/in/stephenwan/
https://www.samsara.com/

managers. We’re invited to the cross‐eng director’s meeting and, at
least in I&P, we’re involved in roadmap planning and management
syncs. Recently, we’ve brought in Staff engineers to participate in
some promotion calibration meetings.

The level of access gives some sense of having a foot planted on both
sides. The role is different enough from Senior levels that it’s not quite
as much an “individual” software‐contributing role, but it’s also quite
different from our more people‐focused management track.

Out of Will’s Staff archetypes, I think my role fits somewhere between
the Solver and the Tech Lead. Part of the fun forme has been jumping
into a different role every 6‐12 months, diving into a different part of
the system with a different group of folks.

How do you spend your time day‐to‐day?

It’s pretty varied by the day. Right now, I try to make Tuesdays and
Thursdaysmeeting days so that I have dedicated focus time in the rest
of the week.

My meeting days typically include 1:1s with folks I’m working closely
with as well as staff meetings. I’ll also spend some time pairing with
individuals on code and design review ormore open‐ended design dis‐
cussions.

On other days my focus time is spent in investigation mode, trying to
suss out both current issues and paving foundation for future projects.
What systems need investment? How have our teams been executing?
What upcoming changes should our group prepare for? This time is
spent shaping in a broader sense.

Looking back, this focus is distinct frommy role prior to Staff. Instead
of executing at the individual level working directly on a project or
team, the time is centered around a wider lens and over a longer term.

Notably, it’s hard for me to guarantee anything longer than a day at a

281

https://basecamp.com/shapeup/1.1-chapter-02

time spent writing code. I don’t get counted when we consider engi‐
neering roadmap bandwidth, though I do try to reserve at least a day
a week for writing some code.

At the micro‐level, I keep a document called “what is stephen doing?”
that drives my work on the hour‐by‐hour granularity. There’s one
main section for the current week and some reminders for future
weeks. Every Monday, I start over ‐ unstarted items from the previous
week get deleted and few survive to the next week.

That delete‐by‐default intention ends up helpingme keep focused and
not feel too strewn out. For a long time, I tried to groom a back‐burner
list of things to do but itmostly had the effect of stressingme out. Most
back‐burner items would end up deleted and incomplete anyways, a
month later.

Do you spend time advocating for technology, practice, process or ar‐
chitectural change? What’s something you’ve advocated for? Can you
share a story of influencing your organization?

Yes. The specific technology or methodology changes quarter to
quarter, but advocacy ends up being a big part of my time. On the
smaller end, I’ve helped write culture documents about how we try to
approach design documents or code review or code ownership rules.

For a bigger example, I spent a couple quarters helping our product
teams adopt Service Level Objectives (SLOs).

At the time, we had a fairly established set of features and customer
base, but our measurements for uptime were still primitive. In
outages, it was hard to get a sense for customer impact because
we lacked the distinctions and definitions to communicate (“What
percent of customers are affected? Is it both reads and writes? Is this
an outage or an existing bug?”), even though we had plenty of metrics
and dashboards to look at.

282

Figure 5: what is stephen doing?

283

Though introducing SLOs certainly required new engineering work,
I’d guess that the majority of my time on the project was spent writing
documentation, talking to people, and doing consultancy‐style work
with teams. We wanted folks to be able to understand reliability ob‐
jectives end‐to‐end: how to define the objective, how to talk about it
in outages, how to measure it in systems, how to keep track of it over
time, how to react when it becomes unhealthy. That level of depth
ends up needing a lot of messaging and massaging to sink in.

Aswithmost of ourbig “migrations,” gettingmany teams to adopt SLOs
came iteratively. We first trialed our new tools with a single teamwith
high‐touch support before figuring out the widespread messaging for
the rest of the org. I think a key role for mewas being able to both talk
with engineers about the new tools at a concrete, how‐do‐I‐use‐this
level, while also convincing director‐level folks that it would be worth
their effort to speak in SLOs.

This same pattern has held true over most of my projects as a Staff
engineer. My role ends up being in brokering deals between groups to
sell a change across the organization.

How do you keep in touch with how things really work as you spend
less time on hands‐on development?

I put in some time programming and doing code review each week,
even if it’s just to put up a small bug fix. I try to put in time to partici‐
pate in the same day‐to‐day rituals other ICs go through ‐ code review,
navigating docs, outage situations, etc.

Of course, that’s not enough to keep a high‐fidelity model in my head ‐
there’s just too much happening across too many teams to keep track
of. The rest is a lot of intentionally seeking out feedback and hearing
first‐hand experiences from others.

I’ve also tried to help bake feedback loops into our organization. I
helped get us started on doing half‐year dev team surveyswith amix of

284

questions about both our technical systems and engineering culture.
The responses from those surveys have been super helpful in keeping
a pulse on how the organization is feeling from the ground up.

How have you sponsored other engineers? Is sponsoring other engi‐
neers an important aspect of your role?

Yes. I’ve tried to be intentional about giving away my state, stepping
back, and letting others build up expertise.

At the organizational level, I think there are ways to structurally spon‐
sor others, pushing other engineers into taking positions as subject‐
matter experts. As an example, I worked on introducing a new dis‐
tributed tracing system late last year. Our core web application is pow‐
ered by a number of different backend systems and over years, the
data flows between these systems became trickier to understand and
page performance suffered. We needed a tool to dig ourselves out.

I had worked on early iterations of our performance tools before and
knowledge of those systems was largely stuck in my head. In the new
project, a concrete goal for me was to bring more folks up to speed. It
wasn’t enough to lay a technical foundation in the systems design: my
teammates on the project would have to own that area of expertise for
years to come.

Practically, that meant spending more of my time discussing and pair‐
ing with the soon‐to‐be tracing owners and much less time directly
contributing code or design. Whenwebeta testedwith a product team,
I’d push another engineer to work on a sales pitch, or figure out the
demo, or get the team onboarded.

Today, the tracing system is widely used and fullymanaged by our SRE
and Observability group. The folks I worked with at the time are now
the go‐to group for performance questions.

On a more personal level, there are always small spots where I can

285

help nudge other folks into the spotlight. Sponsorship opportunities
can start small. Especially if I’mworkingwith someone earlier in their
career, I might suggest that they take on more unknown chunks of a
new system design, or write a draft for new documentation, or demo
our results at our group‐wide meeting.

That small push might be all someone needs to get going, but other
times I think it flows nicely into an opportunity to mentor and pair
as well. Some things (like building up a slide deck for the first time)
can feel intractable until you do them a couple times. There, both the
sponsorship and mentorship sides end up feeling impactful.

It also feels like there’s some tension to get to the right spot. We want
to grow folks into positions where they can own more and make sys‐
tems decisions, but we also want there to be alignment in how those
decisions get made and where we’re trying to go. It’s hard work ‐ it
ends up taking a lot of attention to not gatekeep but get to a satisfying
result.

You first got the title Staff Engineer at your current company. Were
you hired as a Staff Engineer? If not, what was the process of getting
promoted to Staff?

When I joined the company, we didn’t have IC titles. I was leveled into
the Staff role when we introduced leveling in early 2019.

I think I had a big advantage frombeing an early engineer on the team.
That history was huge in giving me context on our past decisions ‐
knowing what pitfalls we had already run into and helping land new
projects into a good place.

At every stage of growth, wewould addmore layers of people andman‐
agement and there’d be a “relearning” period for how the organization
worked. Over time, teams would narrow in scope and only be able to
see a smaller part of the puzzle. Having a big part of the engineering
history in my head not only helpedme connect pieces across those di‐

286

visions, but also gaveme a headstart on keeping personal connections
over to parts of the organization I stopped working with directly. That
breadth naturally lent itself to being able to figure out what could be
most impactful for the org.

What two or three factors were most important in you reaching Staff?
How have the companies you joined, your location, or your education
impacted your path?

My background is somewhat less traditional ‐ I studied Electrical En‐
gineering instead of Computer Science and dropped out of school be‐
fore completingmy degree. That gap forcedme to bemore self‐taught
in my experience, but also left me with a lot of imposter syndrome.
I failed a lot of software interviews early on for not having the right
credentials. Early in my career, that imposter feeling made me really
want to learn as much as I could to cover up for what I feared I didn’t
know.

The summer before I dropped out, I interned at Stripe. I remember,
perhaps through rose‐tinted glasses, feeling so energized by the en‐
gineering culture there: the hyperfocus on customer experience and
excitement about building technology to get there. That experience
ended up being quite influential to how I wanted a workplace to feel.

Laterwhen I left school, I startedworking full‐time at a smaller startup
where I really didn’t knowwhat I was doing. The business meandered
a bit during my time there, but I was lucky to have worked closely
with thoughtful, senior engineers who had a penchant formentorship.
Working there ended up givingme a lot of flexibility on what I wanted
to learn which was good for me but probably bad for the company.

As a last bit of background, I worked at a computer camp for a couple
summers in high school, teaching school‐aged kids basic computer lit‐
eracy. That teachingmindset certainly leftme with more empathy for
how folks end up understanding and interacting with computer sys‐

287

tems.

By the time I joined Samsara, those experiences gaveme a clear sense
for how I wanted work to feel ‐ being an early employee gave me the
influence to shape the way there.

The final piece of the puzzle wasmy first three years at Samsara. I was
fortunate enough to get toworkwith somany thoughtful collaborators
in that time. I can easily tracebackmanyof theworkinghabits,mental
models, andmannerisms that I have today to those individuals. I can’t
imagine that I’d be in this spot in my career without their influence.

There is a popular idea that becoming a Staff Engineer requires com‐
pleting a “Staff Project.” Did you have a Staff Project, and if so what
was it?

No, I didn’t have a designated Staff Project. Looking back, there were
projects over the years that perhaps accumulated into the equivalent
of a big Staff project, but it’s not something we explicitly talked about
in leveling.

As a concept, I’m skeptical of that kind of singularly focused project
and worry that they can put folks into a hero mindset when we really
want to value engineers that can build the organization, not carry it.
I’d be muchmore excited to see iterative improvement and consistent
execution over time: a track record of thoughtful engineering.

I’m happy Samsara seems to agree with that assessment. Our career
path document ends up talking much more about that consistent exe‐
cution over a single large‐haul project.

Whatabout apiece of advice for someonewhohas just startedasa Staff
Engineer?

A couple things come to mind.

Get comfortable talking a lot. I think a big step‐change between Senior

288

https://lethain.com/doing-it-harder-and-hero-programming/

and Staff roles ends up being the focus on people: reconciling compet‐
ing priorities, clearing up miscommunication, aligning folks on the
same page. Even though they typically don’t have direct reports, Staff
engineers are working in a system of both the technology and the peo‐
ple: the biggest impact is going to come from influencing both.

Do your best to not get exhausted. As I transitioned into a Staff role, it
felt easy to slip into a mindset where I was responsible for everything
going on and had to timeslice my focus over too many things. It took
me a while to recognize that this role didn’t mean I had to work many
times harder to be involved in everything, but instead I needed to di‐
rect change through others in the organization. Trust folks, flag issues,
and expect them to work it out.

Did you ever consider engineeringmanagement, and if so howdid you
decide to pursue the staff engineer path?

Back in 2016, I remember having an initial conversation withmyman‐
ager about pursuing an IC vs management path. At the time, I still felt
early into my professional career and wanted to continue investing in
my core technical experience.

I reevaluated that decision every year or so and ended up coming to
the same conclusion ‐ that I wasn’t done gettingmy hands dirty on the
technical side. Throughout that time, much of the work I was doing
was focused around building development experiences for folks at the
company. Those efforts ended up pushing me to do more Staff‐like
work and I naturally progressed from there.

What are some resources (books, blogs, people, etc) you’ve learned
from? Who are your role models in the field?

I tend to prize literature that talks about complicated topics in plain
English, both fiction and non‐fiction.

I remember reading about novelist Haruki Murakami writing his first

289

https://en.wikipedia.org/wiki/Haruki_Murakami

novel in English first, then translating it back to Japanese as a way of
shaping the style of his expression. He notes, “I could only write in
simple, short [English] sentences. Which meant that, however com‐
plex and numerous the thoughts running around my head, I couldn’t
even attempt to set them down as they came. The language had to be
simple, my ideas expressed in an easy‐to‐understand way.”

Writing software is a totally different domain, but it feels like the sen‐
timent fits into some tenet that I really value about communicating:
having an understanding in your head is half the battle ‐ being able to
express that understanding is just as hard and valuable.

I love reading blogs and papers that really go in depth in a technical
area. A few that I’ve come back to over the years include: ‐ Bob Nys‐
trom’s blog posts on programming languages ‐ Vyacheslav Egorov’s
blog about compilers and V8 internals (Chrome’s JS engine) ‐ Bran‐
dur’s blog on various systems topics ‐ Nelson Elhage’s Accidentally
Quadratic ‐ Vicki Pfau’s Blog on developing a GameBoy Advance
emulator ‐ fail0overflow’s blog and talks about console architecture
and exploits ‐ Bungie’s engineering publications on building and
producing the original Halo games

As an anecdote, early in my career I had a budding interest in pro‐
gramming language internals and picked up a compilers textbook
(“the Dragon book”) to learn from. It’s a pretty hard book to get
through. Maybe it’s reasonable to get through it with a professor and
a few classmates, but it was truly difficult for me to get a working
mental model from a reading. Later, I found Bob Nystrom’s Crafting
Interpreters which takes a much more practical approach and it felt
like a huge breath of fresh air.

I’m also a big fan of reading codebases. Early on in my career, I recall
debugging a trickyReact problemwhere some callbackwasn’t happen‐
ing in the order I expected. Reading the docs didn’t help. Putting in

290

http://journal.stuffwithstuff.com/category/language/
http://journal.stuffwithstuff.com/category/language/
https://mrale.ph/
https://mrale.ph/
https://brandur.org/articles
https://brandur.org/articles
https://accidentallyquadratic.tumblr.com/
https://accidentallyquadratic.tumblr.com/
https://mgba.io/tag/debugging/
https://fail0verflow.com/blog/
http://halo.bungie.net/inside/publications.aspx
https://craftinginterpreters.com/
https://craftinginterpreters.com/

print statements wasn’t enough. Mymentor at the time got me to read
some of the source code to better understand what was going on and
that really blew my mind a little bit. I got a bug fix in but also a much
stronger understanding of how React worked.

That was really a turning point. Being able to quickly dive in and jump
through unfamiliar has really felt like a superpower and gives me a
larger pattern matching library for different approaches to software
design. A recent favorite has been reading through the design and
code of esbuild, a super fast javascript bundler.

Finally, some ofmy favorite recent non‐fiction reads in the last couple
years have been on thehistory of BART, the history of XeroxPARC, and
an overview of modern Japanese culture. In each niche, I’ve found
the history and context fascinating as seemingly small, independent
events and decisions have culminated intoways theworldworks today.

291

https://github.com/evanw/esbuild/blob/master/docs/architecture.md
https://www.amazon.com/BART-Dramatic-History-Transit-System/dp/1597143707
https://press.stripe.com/#the-dream-machine
https://www.amazon.com/Making-Common-Policy-Institutional-Studies/dp/0822955105

Resources

Additional resources on Staff-plus engineering

None of the Staff Engineer I spokewith got there alone. Most got there
either through voracious reading or building a powerful network of
colleagues. This section is a collection of recommended resources.

Your Network Almost unanimously, Staff‐plus engineers’ most valu‐
able learning resource wasn’t a book, blog, talk, or paper, but instead
their network of peers and mentors. If you only have one hour to de‐
velop yourself as an engineer, your best bet would be building a net‐
work of people in similar roles.

If you’re looking for a Slack community, #staff-principal-engineering
in the Rands Leadership Slack is a fairly lively room.

What do Staff-plus Engineers do? Folks’ descriptions of their roles:

• Being a principal engineer at Skyscanner
• Defining a Distinguished Engineer by Jessie Frazelle
• How I operated as a Staff engineer at Heroku by Amy Unger
• Not all engineering leaders are engineering managers by Tanya
Reilly

• The Nuts and Bolts with Tanya Reilly
• On Being A Principal Engineer by Silvia Botros
• On Being a Senior Engineer by John Allspaw
• Staff Engineering by Sam Kleinman
• Thriving on the Technical Leadership Path by Keavy McMinn
• What’s a senior engineer’s job? by Julia Evans
• What a Senior Staff Software Engineer Actually Does, Part 1: The
Role andMyTasks and Part 2: TheMindset and Focus of the Role
by Joy Ebertz

• What does Staff level mean at GitLab?

292

https://randsinrepose.com/welcome-to-rands-leadership-slack/
https://medium.com/@SkyscannerEng/being-a-principal-engineer-at-skyscanner-1830dfa17d30
https://blog.jessfraz.com/post/defining-a-distinguished-engineer/
https://amyunger.com/blog/2020/09/10/staff-engineer-at-heroku.html
https://leaddev.com/not-all-engineering-leaders-are-engineering-managers?utm_campaign=con-base&utm_content=tanya-reilly&utm_medium=social&utm_source=twitter
https://engineering.squarespace.com/blog/2020/the-nuts-and-bolts-with-tanya-reilly
https://blog.dbsmasher.com/2019/01/28/on-being-a-principal-engineer.html
https://www.kitchensoap.com/2012/10/25/on-being-a-senior-engineer/
https://tychoish.com/post/staff-engineering/
https://keavy.com/work/thriving-on-the-technical-leadership-path/
https://jvns.ca/blog/senior-engineer/
https://medium.com/box-tech-blog/what-a-senior-staff-software-engineer-actually-does-f3fc140d5f33
https://medium.com/box-tech-blog/what-a-senior-staff-software-engineer-actually-does-f3fc140d5f33
https://medium.com/box-tech-blog/what-a-senior-staff-software-engineer-actually-does-d55308fcdd41
https://about.gitlab.com/blog/2020/02/18/staff-level-engineering-at-gitlab/

Becoming a Staff-plus Engineer Folks sharing their stories of becom‐
ing a Staff‐plus engineer:

• Becoming a Staff Engineer – Interview with Kristina Fox, Staff
iOS Engineer at Intuit by Kaya Thomas

• On becoming a senior technical leader by Jesse Pollak
• On Mid‐Career and Managers by Ryn Daniels
• How does one become a Staff Software Engineer at Google? on
Quora

• The Engineer/Manager Pendulum by Charity Majors
• THings to Know About Engineering Levels by Charity Majors

Operating as a Staff-plus engineer

• Being Glue by Tanya Reilly
• Computers can be understood by Nelson Elhage
• Effective Mental Models for Code and Systems by Cindy Sridha‐
ran

• “I Wouldn’t Start From Here.” How to Make a Big Technical
Change by Tanya Reilly

• Migrations: the sole scalable fix to tech‐debt by Will Larson
• On Mid‐Career and Team Dynamics by Ryn Daniels
• Reclaim unreasonable software by Will Larson
• Surviving the Organisational Side Quest by Tanya Reilly
• Systems that defy detailed understanding by Nelson Elhage
• Team Objectives by Marty Cagan
• Technical Decision Making by Cindy Sridharan
• Technical Research and Preparation by Keavy McMinn
• The Behind‐the‐scenes Work of Tech Leadership by Jean Hsu
• Understanding Project Management Will Improve Your Devel‐
oper Job by Daniel Na

• What Does Sponsorship Look Like? by Lara Hogan
• Where to Start by Keavy McMinn

293

https://elpha.com/posts/4j56np6p/becoming-a-staff-engineer-interview-with-kristina-fox-staff-ios-engineer-at-intuit
https://elpha.com/posts/4j56np6p/becoming-a-staff-engineer-interview-with-kristina-fox-staff-ios-engineer-at-intuit
https://blog.coinbase.com/on-becoming-a-senior-technical-leader-14106f1383b8
https://www.ryn.works/blog/on-mid-career-and-managers
https://www.quora.com/How-does-one-become-a-Staff-Software-Engineer-at-Google-What-might-a-new-grad-entering-the-company-do-to-grow-their-career-to-reach-that-level
https://charity.wtf/2017/05/11/the-engineer-manager-pendulum/
https://charity.wtf/2020/09/14/useful-things-to-know-about-engineering-levels/
https://noidea.dog/glue
https://blog.nelhage.com/post/computers-can-be-understood/
https://medium.com/@copyconstruct/effective-mental-models-for-code-and-systems-7c55918f1b3e
https://noidea.dog/blog/getting-there-from-here
https://noidea.dog/blog/getting-there-from-here
https://lethain.com/migrations/
https://www.ryn.works/blog/on-mid-career-and-team-dynamics
https://lethain.com/reclaim-unreasonable-software/
https://noidea.dog/blog/surviving-the-organisational-side-quest
https://blog.nelhage.com/post/systems-that-defy-understanding/
https://svpg.com/team-objectives-overview/
https://medium.com/@copyconstruct/technical-decision-making-9b2817c18da4
https://keavy.com/work/technical-preparation/
https://blog.coleadership.com/behind-the-scenes-tech-leadership/
https://blog.danielna.com/understanding-project-management-will-improve-your-developer-job/
https://blog.danielna.com/understanding-project-management-will-improve-your-developer-job/
https://larahogan.me/blog/what-sponsorship-looks-like/
https://keavy.com/work/where-to-start/

• Design Docs, Markdown and Git by Caitie McCaffrey

Technical Specifications

• A practical guide to writing technical specs
• Design Docs at Google
• Design Docs, Markdown, and Git
• Documenting Architecture Decisions
• How to write a better technical design document
• Technical Decision‐Making and Alignment in a Remote Culture
• Writing Technical Design Docs

Engineering Strategy Articles on engineering strategy in general:

• A Framework For Responsible Innovation
• HowBig Technical ChangesHappen at Slack ‐ Several People Are
Coding

• On Drafting an Engineering Strategy
• Defining a Tech Strategy
• Delivering on an architecture strategy
• Stepping Stones not Milestones
• Achieving Alignment and Efficiency Through a Technical Strat‐
egy

• The difficult teenage years: Setting tech strategy after a launch
by Anna Shipman

• Learning to have an engineering vision

Examples of engineering strategies:

• Run less software by Rich Archibold

There are alsomany great resources on other facets of strategy as well,
for example, Marty Cagan’s series on Product Strategy.

294

https://caitiem.com/2020/03/29/design-docs-markdown-and-git/
https://stackoverflow.blog/2020/04/06/a-practical-guide-to-writing-technical-specs/
https://www.industrialempathy.com/posts/design-docs-at-google/
https://caitiem.com/2020/03/29/design-docs-markdown-and-git/
https://cognitect.com/blog/2011/11/15/documenting-architecture-decisions
https://www.range.co/blog/better-tech-specs
https://multithreaded.stitchfix.com/blog/2020/12/07/remote-decision-making/
https://medium.com/machine-words/writing-technical-design-docs-71f446e42f2e
https://multithreaded.stitchfix.com/blog/2019/08/19/framework-for-responsible-innovation/
https://slack.engineering/how-big-technical-changes-happen-at-slack-f1569d25ee7b
https://slack.engineering/how-big-technical-changes-happen-at-slack-f1569d25ee7b
https://www.paperplanes.de/2020/1/31/on-drafting-an-engineering-strategy.html
https://sarahtaraporewalla.com/agile/design/architecture/Defining-a-Tech-Strategy
https://blog.thepete.net/blog/2019/12/09/delivering-on-an-architecture-strategy/
https://medium.com/@jamesacowling/stepping-stones-not-milestones-e6be0073563f
https://yenkel.dev/posts/achieving-alignment-and-efficiency-through-a-technical-strategy
https://yenkel.dev/posts/achieving-alignment-and-efficiency-through-a-technical-strategy
https://medium.com/ft-product-technology/the-difficult-teenage-years-setting-tech-strategy-after-a-launch-7f42eb94a424
https://unwiredcouch.com/2018/01/03/engineering-vision.html
https://www.intercom.com/blog/run-less-software/
https://svpg.com/product-strategy-overview/

Books Although I’ve found that many folks don’t read too many
books, when I asked Staff engineers for their most valuable resources,
they inevitably mentioned a personal mentor or a book. They had
blog posts and tech talks they might mention related to a more
specific problem, but they were most changed by this larger, more
papery format.

Some books which were recommended:

• A Philosophy of Software Design by John Ousterhout
• Accelerate: Building and Scaling High Performing Technology
Organizations by Forsgren, Humble and Kim.

• Becoming a Technical Leader: An Organic Problem‐Solving Ap‐
proach by Gerald Weinberg

• Building Evolutionary Architectures by Ford, Parsons, and Kua
• Escaping the Build Trap: How Effective Product Management
Creates Real Value by Melissa Perri

• Good Strategy Bad Strategy: The Difference and Why it Matters
• High Output Management eBook: Andrew S. Grove
• The Manager’s Path: A Guide for Tech Leaders Navigating
Growth and Change by Camille Fournier

• The Mythical Man‐Month by Fred Brooks
• The Phoenix Project by Kim, Behr, and Spafford.
• The Passionate Programmer by Chad Fowler
• The Pragmatic Programmer by Andrew Hunt, David Thomas
• Resilient Management by Lara Hogan
• Software Design X‐Rays: Fix Technical Debt with Behavioral
Code Analysis by Adam Tornhill

• Thinking in Systems: A Primer by Donella Meadows

If you’re looking for, even more, recommended book lists abound, in‐
cluding my own at Irrational Exuberance’s Best Book.

295

https://lethain.com/notes-philosophy-software-design/
https://www.amazon.com/Accelerate-Software-Performing-Technology-Organizations-ebook/dp/B07B9F83WM/ref=sr_1_1?s=books&ie=UTF8&qid=1532354658&sr=1-1&keywords=accelerate+devops
https://www.amazon.com/Accelerate-Software-Performing-Technology-Organizations-ebook/dp/B07B9F83WM/ref=sr_1_1?s=books&ie=UTF8&qid=1532354658&sr=1-1&keywords=accelerate+devops
https://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I/ref=sr_1_2?s=digital-text&ie=UTF8&qid=1532438948&sr=1-2&keywords=becoming+a+technical+leader
https://www.amazon.com/Becoming-Technical-Leader-Gerald-Weinberg-ebook/dp/B004J4VV3I/ref=sr_1_2?s=digital-text&ie=UTF8&qid=1532438948&sr=1-2&keywords=becoming+a+technical+leader
https://lethain.com/building-evolutionary-architectures/
https://www.amazon.com/dp/B07K3QBWG1/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/dp/B07K3QBWG1/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/Good-Strategy-Bad-Difference-Matters-ebook/dp/B004J4WKEC/ref=sr_1_2?s=books&ie=UTF8&qid=1532354394&sr=1-2&keywords=good+strategy%2C+bad+strategy
https://www.amazon.com/dp/B015VACHOK/
https://www.amazon.com/Managers-Path-Leaders-Navigating-Growth-ebook/dp/B06XP3GJ7F/ref=sr_1_3?s=books&ie=UTF8&qid=1532438516&sr=1-3&keywords=high+output+management
https://www.amazon.com/Managers-Path-Leaders-Navigating-Growth-ebook/dp/B06XP3GJ7F/ref=sr_1_3?s=books&ie=UTF8&qid=1532438516&sr=1-3&keywords=high+output+management
https://www.amazon.com/Mythical-Man-Month-Software-Engineering-Anniversary/dp/0201835959/ref=sr_1_1?s=books&ie=UTF8&qid=1532354207&sr=1-1&keywords=mythical+man+month
https://www.amazon.com/Phoenix-Project-DevOps-Helping-Business-ebook/dp/B078Y98RG8/ref=sr_1_1?s=books&ie=UTF8&qid=1532354475&sr=1-1&keywords=the+phoenix+project
https://www.amazon.com/Passionate-Programmer-Remarkable-Development-Pragmatic-ebook/dp/B00AYQNR5U/ref=sr_1_1?keywords=chad+fowler&qid=1582836888&sr=8-1
https://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X
https://resilient-management.com/
https://www.amazon.com/Software-Design-X-Rays-Technical-Behavioral-ebook/dp/B07BVRLZ87
https://www.amazon.com/Software-Design-X-Rays-Technical-Behavioral-ebook/dp/B07BVRLZ87
https://www.amazon.com/Thinking-Systems-Donella-H-Meadows/dp/1603580557
https://lethain.com/best-books

Talks The Staff‐plus engineers I’ve chatted with have generally men‐
tioned giving talks as valuable to themmore than listening to talks, but
there certainly are some excellent talks out there. Cindy Sridharan
(Twitter) is the best source of amazing talks, in particular, her write‐
ups of Best of 2019 in Tech Talks, Best of 2018 in Tech Talks, and Best
of 2017 in Tech Talks.

Papers Relatively few Staff‐plus Engineers are avid readers of Com‐
puter Science papers. However, most are familiar with a handful of
foundational papers, and the small subset who do spend time reading
papers tend to get quite a bit out of it.

If you aspire to join the category of frequent paper readers, there’s no
better place than Adrian Colyer’s the morning paper, which will send
you a summary of a computer science paper every weekday. If you’re
more interested in getting some foundational exposure to some well‐
known papers, first read one of How to Read an Academic Article by
Peter Klein or How to Read a Paper by S. Keshav, and then jump into
this list of recommended papers:

• Dynamo: Amazon’s Highly Available Key‐value Store
• On Designing and Deploying Internet‐Scale Services
• No Silver Bullet ‐ Essence and Accident in Software Engineering
• Out of the Tar Pit
• The Chubby lock service for loosely‐coupled distributed systems
• Bigtable: A Distributed Storage System for Structured Data
• Raft: In Search of an Understandable Consensus Algorithm
• Paxos Made Simple
• SWIM: Scalable Weakly‐consistent Infection‐style Process
Group Membership Protocol

• Hints for Computer System Design
• Big Ball of Mud
• The Google File System

296

https://medium.com/@copyconstruct
https://twitter.com/copyconstruct
https://medium.com/@copyconstruct/best-of-2019-in-tech-talks-bac697c3ee13
https://medium.com/@copyconstruct/best-of-2018-in-tech-talks-2970eb3097af
https://medium.com/@copyconstruct/best-of-2017-in-tech-talks-8f78b34ff0b?source=---------17------------------
https://medium.com/@copyconstruct/best-of-2017-in-tech-talks-8f78b34ff0b?source=---------17------------------
https://blog.acolyer.org/
https://organizationsandmarkets.com/2010/08/31/how-to-read-an-academic-article/
https://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf
https://s3.amazonaws.com/systemsandpapers/papers/amazon-dynamo-sosp2007.pdf
https://s3.amazonaws.com/systemsandpapers/papers/hamilton.pdf
https://s3.amazonaws.com/systemsandpapers/papers/Frederick_Brooks_87-No_Silver_Bullet_Essence_and_Accidents_of_Software_Engineering.pdf
https://s3.amazonaws.com/systemsandpapers/papers/outofthetarpit.pdf
https://s3.amazonaws.com/systemsandpapers/papers/chubby-osdi06.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/bigtable-osdi06.pdf
https://s3.amazonaws.com/systemsandpapers/papers/raft.pdf
https://s3.amazonaws.com/systemsandpapers/papers/paxos-made-simple.pdf
https://s3.amazonaws.com/systemsandpapers/papers/swim.pdf
https://s3.amazonaws.com/systemsandpapers/papers/swim.pdf
https://s3.amazonaws.com/systemsandpapers/papers/acrobat-17.pdf
https://s3.amazonaws.com/systemsandpapers/papers/bigballofmud.pdf
https://s3.amazonaws.com/systemsandpapers/papers/gfs.pdf

• CAP Twelve Years Later: How the Rules Have Changed
• Harvest, Yield, and Scalable Tolerant Systems
• MapReduce: Simplified Data Processing on Large Clusters
• Dapper, a Large‐Scale Distributed Systems Tracing Infrastruc‐
ture

• Kafka: a Distributed Messaging System for Log Processing
• Large‐scale cluster management at Google with Borg
• Mesos: A Platform for Fine‐Grained Resource Sharing in the
Data Center

Probably the best place to find high‐quality papers to read is Papers
We Love, which also run meetups to discuss papers. A few other re‐
sources are the ACM SIGOPS Hall of Fame Award list and Irrational
Exuberance’s paper collection.

Other nice things As I did the research for these resources, I found
some other pieces that didn’t quite fit anywhere above, but which I
think are good and worth looking at nonetheless:

• Testing in Production, the safe way and Testing in Production:
the hard parts by Cindy Sridharan

• A decade in review in tech by Cindy Sridharan
• Boogeyman Problems by Dan Na

If you find more, please send themmy way!

297

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://s3.amazonaws.com/systemsandpapers/papers/FOX_Brewer_99-Harvest_Yield_and_Scalable_Tolerant_Systems.pdf
https://s3.amazonaws.com/systemsandpapers/papers/mapreduce.pdf
https://s3.amazonaws.com/systemsandpapers/papers/dapper.pdf
https://s3.amazonaws.com/systemsandpapers/papers/dapper.pdf
https://s3.amazonaws.com/systemsandpapers/papers/Kafka.pdf
https://s3.amazonaws.com/systemsandpapers/papers/borg.pdf
https://s3.amazonaws.com/systemsandpapers/papers/mesos.pdf
https://s3.amazonaws.com/systemsandpapers/papers/mesos.pdf
https://paperswelove.org/
https://paperswelove.org/
https://www.sigops.org/awards/hof/
https://lethain.com/some-of-my-favorite-technical-papers/
https://lethain.com/some-of-my-favorite-technical-papers/
https://medium.com/@copyconstruct/testing-in-production-the-safe-way-18ca102d0ef1
https://medium.com/@copyconstruct/testing-in-production-the-hard-parts-3f06cefaf592
https://medium.com/@copyconstruct/testing-in-production-the-hard-parts-3f06cefaf592
https://medium.com/@copyconstruct/a-decade-in-review-in-tech-1cde76c9b43c
https://blog.danielna.com/boogeyman-problems/

Where do Staff-plus engineers fit into the org?

When I work on the organization design of an engineering organiza‐
tion, I think a lot about “organizational mathematics,” the guideline
that each team should have one manager and six to eight engineers,
and each manager of managers should support four to six managers.
From those numbers, you can rapidly determine an appropriate struc‐
ture for your organization that’ll work fairly well. It might not be per‐
fect, but it’ll work.

As I’ve applied that approach to designingmultiple organizations, one
of the recurring edge cases that have come up is deciding where the
senior‐most engineers should report. Should they, as the orgmath dic‐
tates, report to managers in the organizational leaf nodes? Or should
they, as key leaders in your organization, report tomore senior leaders
to have better access to the information and authorization they need
to excel in their role?

Before answering, it’s worth describing the most common configura‐
tions you’ll find in companies today, in particular how configurations
vary across the Staff‐plus archetypes:

• Tech Leads typically report to a manager responsible for one
team. Less frequently, they’ll report to a manager responsible
for two to four teams. In both cases, they’ll operate at the same
scope as that manager. Examples: Dan Na reported to the man‐
ager for the Internationalization Platform.

• Architects typically report to a more senior manager, often
a manager of managers. Often they’ll be responsible for a
horizontal‐slice across that manager’s area of responsibility, for
example, data modeling. Examples: Keavy McMinn reported to
the CTO.

• Solvers typically operate in companies that feature a “weak team
concept,” and often reporting hierarchies are less defined or de‐

298

https://lethain.com/sizing-engineering-teams/
https://lethain.com/staff-engineer-archetypes/
https://lethain.com/staff-engineer-archetypes/
https://lethain.com/staff-engineer-archetypes/

liberate in such companies. It is most common to see them re‐
porting to a team manager, but you’ll find a bit of everything.
Another common pattern is collecting these folks into an “Office
of the CTO” or “Office of the CEO” where they report to an execu‐
tive who directs their work. Examples: Ritu Vincent is part of an
incubator reporting to the CEO.

• Right Hands report into a senior leader, oftenmanagers respon‐
sible for a hundred or more folks, operating with that leader’s
authority. Examples: Rick Boone reported to the VP of Infras‐
tructure; Michelle Bu reported to the Chief Product Officer.

Understanding how these different archetypes typically report differ‐
ently into the organization helps decode some of the seeming arbitrari‐
ness of reporting structures.

Office of the CTO

An aside on the “Office of the CTO” concept, as many folks haven’t en‐
countered it in their work. Typically, the CTO, although sometimes a
CEO will do something similar, will have two to eight Staff‐plus engi‐
neers who report to them directly. These folks are treated as senior
leaders in the sense of getting a problem or opportunity to pursue,
very little management support, and the proximity to lean on the ex‐
ecutive for support when necessary.

Within these offices, you’ll find a mix of Architects, Solvers and Right
Hands.

Typically the Office of the CTO comes relatively late in a company’s evo‐
lution and is often introduced as a workaround to an existing organi‐
zational problem that is a challenge to address, for example, lack of
trust between Staff‐plus engineers and management teams, or an in‐
ability to delegate by the CTO. If you find yourself reaching for it early
in a company’s evolution, ask yourself if you’re avoiding a problemyou

299

should be fixing instead of introducing this concept into your struc‐
ture.

But in practice…

Based on the archetypes, there is usually a theoretically correct place
for every engineer to fit into the organization, but you’ll find that in
practice, few organizations fully align their actual reporting structure
with that theoretical structure.

Sometimes this is due to a lack of attention to organizational structure
by your management team. In other cases, it’s due to a lack of
managerial bandwidth to support folks at the correct positions. For
example, the “correct” manager is already managing a team of twelve
and can’t support another engineer effectively. Another common
scenario is that the structure is shifting frequently enough that
managers are reluctant to change the engineer’s manager again, espe‐
cially as manager‐changes often lead to abstract, middle‐of‐the‐road
performance reviews.

If you find yourself reporting to someonewho you believe is thewrong
manager, it’s a reasonable conversation tohavewith yourmanager, but
it’s worth acknowledging that many managers will react defensively
to the implication that they’re not the right manager for you. If your
manager is mature and you have a strong relationship with them, go
ahead and have the conversation. If not, it may be less risky to instead
have amore abstract discussionwith their skip‐level aboutwhere Staff‐
plus engineers report in their organization.

Before you rush to advocate for change, ask yourself what you think
would be different if your reporting structure changed. The report‐
ing structure is a form of authority, and generally, folks over‐estimate
how authority will help them. The classic trap is, of course, that the
folks who benefit the most from additional authority–minorities and

300

women–are the folks whose managers are most likely to react defen‐
sively to the suggestion of the change.

How should it work?

If you’re looking to design a proposal for your management team on
how they ought to perform these sorts of organizational adjustments
over time, a few things to consider. When possible, reporting
changes should happen immediately. Delaying forces folks to navi‐
gate two transitions, including a particularly challenging intermediate
environment between the previous and new roles. It’s always lower
risk to navigate a single role transition, even if it means agreeing to
reduced manager support if your new manager is underwater with
their workload.

If you can’t make them immediately, always set a timeline for report‐
ing to the correct manager after a role change. If you don’t have a
timeframe to clearly reopen the structure, it’s relatively less likely to
happen.

Most companies struggle to set up this sort of organizational infras‐
tructure to fully support Staff‐plus engineers as genuine leaders, so
you should look at this as a problem you want to make progress on
over years, rather than one that’ll get fixed overnight. If you go into it
expecting an immediate, permanent solution, you’re likely in for some
turbulence.

301

Managing Staff-plus engineers

While getting feedback on StaffEng, one request was for more content
on managing Staff‐plus engineers. It doesn’t quite fit the theme–that
effort is focused on the Staff engineers themselves rather the company
or the manager–but it’s an interesting topic and a worthy appendix.

Of course, not all aspects of managing Staff‐plus folks are unique to
the level: there are fundamentals that apply to managing anyone in
any role, like doing effective 1 on 1s or giving feedback. For that sort of
thing, read Lara Hogan’s Resilient Management or Camille Fournier’s
The Manager’s Path. What I wanted to get into here is how managing
someone at the Staff‐plus level differs from managing, say, a Senior
engineer.

These roles vary enough across companies that some aspects of man‐
aging your Staff‐plus engineers will depend on the Staff archetypes
your company emphasizes andwhere your Staff‐plus engineers should
fit into the engineering organization, but there are some approaches
that will be helpful for you across most configurations.

• Sponsor and support more than you direct. If you’re giving
daily direction to your Staff engineers, you’re utilizing them
in the wrong roles. If you aren’t giving them weekly feedback,
you’re delaying their growth. If you aren’t lending your spon‐
sorship to their initiatives, then you’ll train the initiative out of
them.

• Help themrewire theirdefinitionof success. Working in a high‐
performing product engineering team is a flywheel of positive
feedback. Your product manager appreciates your work. Your
engineering manager engages the team. Your peers enjoy work‐
ing together. Your users love your product. Your business loves
the user adoption. Conversely, the Staff engineer’s flywheel of
feedback is a lot less immediate. You spend more time working

302

http://staffeng.com
https://marcorogers.com/blog/my-approach-to-1-on-1s
https://smallbigideas.substack.com/p/own-your-feedback-part-1
https://resilient-management.com
https://www.oreilly.com/library/view/the-managers-path/9781491973882/

through conflict. You work on longer time horizons. You’re rep‐
resenting important priorities that require deprioritizing some
business or product goals. Many folks don’t address this shift and
wake up a year later hating their new role, and as their manager,
you can help them recognize this shift and find compensating
strategies to remain energized.

• Give feedback. One particularly important strategy for rewrit‐
ing their definition of success—and to keep them growing—is
to give frequent feedback. If they’ve picked the wrong battle,
tell them, and tell them why. If they’re prioritizing work you
wouldn’t, tell them, and tell them why. Nothing is more stress‐
ful for a high performer than not knowing how they’re doing! If
you don’t give feedback, especially about their best work, they’ll
keep changing their approach until you do give feedback (often
to your regret).

• Keep them informed. As a manager, it can be easy to forget
how much more access you have to information than the engi‐
neers youworkwith. The reality is thatmost organizations build
their information flows around managers communicating key
information to other managers. Your Staff‐plus engineers will
be hamstrung if you don’t find a deliberate, reproducible process
for sharing your context with them. Some folks do this at the be‐
ginning of their 1:1s, which works OK, but I’ve come to prefer
dropping them into the team’s chat channel as they happen and
aggregating them into my weekly email update.

• Involve them in planning and prioritization. Many engineers
get frustrated that “the right work never gets prioritized,” and
one of the best solutions to this is to proactively involvemore en‐
gineers in the planning process. This works on two fronts. First,
they understandmore of the competing work andwhy that work
is important, and second, they’ll be present to advocate more ef‐
fectively for the sorts of technical work they see missing.

303

https://lethain.com/weekly-updates/

• Agree on how to stay aligned while acting independently. As
you push Staff‐plus engineers you support towards leadership,
they’re going to start leading more, which will sometimes
include surprising you. If leaders you work with never surprise
you, then you’re not delegating enough, but if they frequently
surprising you, it may be helpful to explicitly establish your
controls.

• Create space for them to think without detaching them from
theday‐to‐day realities of the organization. Many folks in these
roles are so motivated by impact and “doing the right thing for
the business” that they’ll grind themselves down without exter‐
nal intervention. If you’re their manager, then “external inter‐
vention” means you. If you see them spending too much time
firefighting and helping unblock urgent work, work with them
to protect more time for deep thinking work as well. Conversely,
if you see them only doing deep thinking work, they’re likely to
lose context and potentially the respect of their peers and the
business if they don’t adjust that mix.

• Remind them they’re a role model. Much like they do for man‐
agers, engineers in an organizationwatch Staff‐plus engineers to
learn which behavior and actions are rewarded (and tolerated).
This is a great responsibility, but also a huge opportunity for im‐
pact: by living positive values, they have the opportunity to cre‐
ate a positive organization around them.

• Minimize manager overflow. In the quest for efficiency over
effectiveness, many companies trap their managers in a stag‐
gering amount of coordination and bureaucracy. When you’re
drowning, you’re going to look for help wherever you can, and
in many cases, that causes managers to offload management
work to their Staff engineers. This is absolutely going to happen
sometimes–your relationship with Staff‐plus engineers you
manage is a partnership–but try very hard to minimize the

304

https://lethain.com/identify-your-controls/
https://lethain.com/identify-your-controls/
https://www.amazon.com/dp/B004SOVC2Y/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1
https://www.amazon.com/dp/B004SOVC2Y/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

amount and ensure it’s a temporary overflow rather than a
permanent one.

• Give them unrefined problems. This is a senior role where you
ought to give them a problem space that they narrow into amore
specific problem and solution. They have better technical con‐
text than you do, and if you point them too precisely at what
you think is the problem, you won’t benefit from their judgment.
Picking precisely the right problem creates at least as much im‐
pact as finding precisely the right solution, and is only possible
when you create space.

• Cede space to their leadership. When you’re managing a Staff‐
plus engineer, find ways to move pieces of your ownership ex‐
plicitly into their realm of responsibility. For example, how can
you enable them to hold their team responsible for technical
quality, rather than you doing it? This creates leverage for both
of you and a sense of ownership for the Staff‐plus engineer.

• Appreciate them. Great Staff‐plus engineers operate fairly inde‐
pendently, so it can be easy to deprioritize them when the orga‐
nization is on fire. Ignoring your most important people is the
manager version of “snacking”–something that feels important
but usually isn’t the right priority. So keep your 1:1s, and gener‐
ally remember to show up for them, especially if they aren’t the
sort of person to demand it.

• Build and insist upon alignment with the business. Some
engineers succeed despite harboring a mentality that technical
work is more important than the business requiring that work.
This mentality is generally toxic, but it exceptionally toxic when
held by a Staff‐plus engineer. This is someone who is a role
model for the wider organization, and stretching them beyond
that perspective is essential for them to remain in a leadership
role. Companies undermine and eventually eject leaders who
are misaligned with the business.

305

• Hold them responsible for the full role. While few folks reach
Staff‐plus roles with major technical weaknesses, it’s my lived
experience that many folks reach these roles hampered by sig‐
nificant leadership or behavioral challenges. These folks get the
title but tend to linger in Staff purgatory where they’re expected
to lead but are kept away from most leadership opportunities.
They’re viewed as too unreliable or “expensive to involve.”
You’ve gotta give these folks feedback on their gaps and hold
them accountable to the full role expectations. Don’t let them
linger as quasi‐leaders indefinitely. Maybe they initially got the
role via title inflation, so you decide to just cover for their gaps
instead of fixing it–don’t do that, instead, figure out a plan to
support them while shifting that responsibility to them.

• Give them access to the room but don’t treat it as a status sym‐
bol. Folks often get fixated on status symbols, and one that’s
particularly common for engineers to focus on is “being in the
room.” Sometimes meetings are where the work happens, but
most routine reporting meetings have too many people in them,
and you can create a great deal of time and space for both you
and the Staff‐plus engineer you’re supporting by sharding atten‐
dance across various meetings rather than doubling up for all of
them.

The transition from Senior to Staff‐plus engineer is a major one that
changes the sort of work being done, whereas previous transitions of‐
ten only change the work’s extent. Many folks struggle with that tran‐
sition, and many managers aren’t sure how to help support the Staff‐
plus engineers they work with. Certainly, this is an incomplete list of
helpful things you can do to support them, but hopefully, it’s a useful
starting point.

306

https://charity.wtf/2020/11/01/questionable-advice-the-trap-of-the-premature-senior/
https://hbr.org/1999/11/management-time-whos-got-the-monkey

Designing a Staff-plus interview loop

Whenwe talk about designing a Staff‐plus engineer interview loop, the
first thing to talk about is that absolutely no one is confident their Staff‐
plus interview loopworkswell. Many loops endup looking for a senior
engineer who’s really fast at solving problems, which doesn’t reflect
the actual role. Others focus on communication skills, which are a
key part of the role but certainly not the entirety of it. A few compa‐
nies even construct their process to assess whether the candidate feels
like a member of their existing senior engineering team, conflating
excellence with familiarity.

Even if no one feels great about their loop, there is still a body of collec‐
tive learnings to incorporate into your attempt to design a loop, which
is what we’ll cover here. We’ll start with examining the frequent fail‐
ure modes of Staff‐plus interview loops, discuss the signals that you
do want to test for in these loops, and finally discuss some interview
formats which can be useful for assessing those signals.

Challenges

While technology interviews, in general, are a bit of amess, interviews
for very senior candidates have enough issues of their own to pack a
dedicated struggle bus. It’s helpful to start with understanding some
of the common failure modes before we move into considering what
might work better:

• A senior engineer, but better. Many interview processes look
at Staff‐plus engineers as Senior engineers who are a bit better
at everything. They’re a bit faster. They’re a bit clearer in their
communication. They’re a bit more nuanced in architecture
discussions. This stems from most folks being unfamiliar with
Staff roles and usually causes Staff‐plus engineers to perform
poorly on these loops. In particular, most Staff‐plus engineers

307

are programming less than Senior engineers, and consequently
are slower rather than faster at rote programming tasks. You’ll
find some Staff‐plus engineers who remain very quick program‐
mers, but you won’t find much correlation between that speed
and their impact.

• A senior engineer, but worse. Conversely, other interview
processes recognize that Staff‐plus engineers are spending less
time programming and anticipate slower performance on some
of the more mundane programming exercises. This makes
it more likely for Staff‐plus engineers to succeed in the loop
but doesn’t get signal on what makes these sorts of engineers
exceptionally impactful. If you don’t add additional interviews
to capture those strengths, reduced speed on rote work will
likely correlate with seniority to some extent, but it correlates
more strongly with many other factors.

• A senior engineer, but they’ll accept the offer. Another fail‐
ure mode is companies that are struggling to hire Senior engi‐
neers and decide to inflate their titles without changing the role
expectations. In these cases, the interviews are appropriate to
the actual work, but the title isn’t. With neither the company
nor the candidate fully willing to acknowledge the inflation, all
future Staff‐plus hiring at the company acquires a veneer of un‐
certainty.

• Someone like us. Many loops focus on whether the Staff‐plus
candidate projects the same wisdom and confidence as the exist‐
ing Staff‐plus engineers at the company, where the interview de‐
brief might include statements like, “They feel like they’d be a
natural part of this team.” This sort of approach is more likely
to anchor on semi‐arbitrary features like how they project their
confidence than on the candidate’s capabilities.

• Not better than me. Especially when hiring your first Staff‐plus
engineers, you’ll oftenfind some earlier career interviewerswho

308

undervalue the candidate’s strengths and instead anchor on the
candidate’s capability to perform the interviewer’s current role.
You’ll have an impressive Staff‐plus candidate, but the interview
panel will be skeptical of their ability to thrive as a mid‐level en‐
gineer. This seems to be brought up most frequently for women
and minority candidates.

• The reverse filter. Certain kinds of interviews are signals that
you as an organization don’t know how to use Staff‐plus engi‐
neers: whiteboard algorithmic interviews, interviewers are pre‐
dominantly early career, and so on. Many Staff‐plus processes
cause the best candidates to opt‐out early in the process, often
somewhat invisibly to the recruiting metrics.

• Too title‐oriented? At a certain level of accomplishment, peo‐
ple don’t care much about internal leveling, generally because
they’re already financially secure. This creates a peculiar pres‐
sure on folks newly reaching Staff‐plus levels to avoid appearing
overly career or title motivated, making it harder for folks to at‐
tain the title for the first time.

Some of these are quite difficult to address, others are easy as long as
you keep them in mind, but all of them are worth considering as you
start to design or re‐envision your Staff‐plus interview process.

Signals

The best interview loops reason forward from the signals you want
to capture back to the interview topics and format, which means the
first important question to answer is, “Which signals are important for
hiring successful Staff‐plus Engineers?”

The signals I’d recommend focusing on are:

• Self‐awareness. Are they accountable for mistakes? Have they
demonstrated growth in areas where they’ve previously been

309

https://lethain.com/designing-interview-loops/

weaker?
• Judgment. Are they able to see around corners to identify prob‐
lems? Are they able to navigate broad, ambiguous problems?
Can they effectivelymediate between folks in an argument about
tradeoffs or design? Can they derisk the execution of difficult
problems?

• Collaboration. Do they partner well with others? What about
folks less experienced than them? More experienced than them?
Their managers? Cross‐functionally? Executives?

• Communication. Are they good listeners who understand the
pointsmadebyothers? Are they able to communicate their ideas
clearly? Can they communicate in the formats that your com‐
pany relies upon (written, verbal, etc)?

• Development. Do they grow others around them? Does the “or‐
ganizational bench” grow in areas they lead or atrophy? Do bro‐
ken systems and processes get cleaned up?

It’s interesting to note thatmanywould not consider these to explicitly
be technical skills. Domain expertise is amajor factor in success at all
of them, but it’s exercising that expertise in conjunction with other
critical skills and behaviors that transition someone from a tenured
Senior engineer into a Staff‐plus one.

Formats and structures

The two key questions to ask yourself when designing an interview
loop are always:

1. What tasks and behaviors will this person need to succeed on a
day to day basis?

2. How can we get them to demonstrate actually doing them?

Most senior candidates become increasingly diplomatic and asking
them about their work is never as helpful as watching them do the

310

work. If mentorship is the most important activity, don’t rely on them
talking about mentorship, but instead find a way to see them mentor‐
ing someone. If it’s architecture, present your current systems and
ask them to bring their questions to see how they react to decisions
they disagree with – get away from the ambiguous abstract.

Moving beyond the typical one‐on‐one discussions and programming
interviews, some of the interview formats and structures that I’ve
found particularly effective for evaluating Staff‐plus signals are:

• Structured presentation. Have the candidate prepare and
present for twenty to thirty minutes on a narrow topic to a
group of peers. The format gives a great signal on structured
thinking, communication, listening to, and answering ques‐
tions. Depending on the topic you select, you can get strong
signals on one or two areas of your choice. This format is
particularly effective at hearing how folks talk about their peers
and coworkers.

• Code review. Prepare a pull request and ask the candidate to
provide feedback on it, focusing on empathy, clarity, and useful‐
ness.

• Data modeling, interfaces, and architecture. Have the candi‐
date walk through the design of a system, typically with a focus
on evolving it to meet changing requirements. These interviews
often try to do toomuch: narrow your focus and add layers to the
question to allow you to continue drilling deeper for candidates
who make significant progress.

• Subject matter expertise. Interviews that test their areas of do‐
main expertise. For example, a frontend engineer might collab‐
orate with a designer and product manager on how technical
constraints would impact a proposed design and launch time‐
line. For backend engineers, you might provide the candidate
with a broken piece of software or environment and have them

311

debug the problem back to a fix.
• Mentorship panel. It’s challenging to hire Staff‐plus candidates
if your panel consists entirely of earlier career folks, but it’s
equally risky to hire a Staff‐plus candidate if they haven’t demon‐
strated success mentoring folks earlier in their careers. Have a
panel of three to four folks they might be expected to mentor
come with questions. Especially watching folks redirect roughly
framed questions into a useful discussion is a great insight into
their ability to mentor in their new role.

If these formats aren’t enough, then start asking around! Most compa‐
nies have designed bespoke approaches to their Staff‐plus loops, and
you can learn a great deal from that discussion.

How to pull it together

Youmight reasonably expect this to end with a precompiled interview
loop for your company to use to evaluate Staff‐plus engineers, and I
hate to disappoint, but I think most of the value comes from thinking
through the signals that matter to you and designing formats that get
at those signals in a way that resonates to you and your company.

Whatever interviews you end up using, test them, gather candidate
feedback, and keep evolving them to be better!

312

Staff-plus career ladders

There are somany different career ladders shared in public these days
that there’s no reason not to read a half‐dozen different ones before
attempting to design your own.

Some that are particularly worth reading through:

• Rent the Runway
• Kickstarter
• Patreon

You can find even more collected at progression.fyi.

I think it’s important to recognize that career ladders only apply ef‐
fectively against populations of individuals, they rarely, if ever, apply
cleanly against any individual. This effect becomes particularly pro‐
nounced in Staff‐plus roles, which are oftenonly populatedby a couple
of folks. Ladders are essential but don’t get caught believing they’re a
map of how things actually work rather than a mythos of how things
are intended to work.

CharityMajors has alsowritten a helpful guide of things to knowabout
engineering levels.

313

https://docs.google.com/spreadsheets/d/1k4sO6pyCl_YYnf0PAXSBcX776rNcTjSOqDxZ5SDty-4/edit#gid=0
https://gist.github.com/jamtur01/aef437a79fee5a9cefdc#junioreng
https://levels.patreon.com
https://www.progression.fyi
https://charity.wtf/2020/09/14/useful-things-to-know-about-engineering-levels/
https://charity.wtf/2020/09/14/useful-things-to-know-about-engineering-levels/

	Acknowledgments
	Foreward
	Preface
	Overview
	Staff engineer archetypes
	What do Staff engineers actually do?
	Does the title even matter?

	Operating at Staff
	Work on what matters
	Writing engineering strategy
	Managing technical quality
	Stay aligned with authority
	To lead, you have to follow
	Learn to never be wrong
	Create space for others
	Build a network of peers
	Present to executives

	Getting the title where you are
	Promotion packets
	Find your sponsor
	Staff projects
	Get in the room, and stay there
	Being visible

	Switching companies to get the title
	Finding the right company
	Interviewing for Staff-plus roles
	Negotiating your offer

	Stories
	Michelle Bu - Payments Products Tech Lead at Stripe
	Ras Kasa Williams - Staff Engineer at Mailchimp
	Keavy McMinn - Senior Principal Engineer at Fastly
	Bert Fan - Senior Staff Engineer at Slack
	Katie Sylor-Miller - Frontend Architect at Etsy
	Ritu Vincent - Staff Engineer at Dropbox
	Rick Boone - Strategic Advisor to Uber's VP of Infrastructure
	Nelson Elhage - Formerly Staff Engineer at Stripe
	Diana Pojar - Staff Data Engineer at Slack
	Dan Na - Staff Engineer and Team Lead at Squarespace
	Joy Ebertz - Senior Staff Software Engineer at Split
	Damian Schenkelman - Principal Engineer at Auth0
	Dmitry Petrashko - Tech Advisor to the Head of Infra at Stripe
	Stephen Wan - Staff Engineer at Samsara

	Resources
	Additional resources on Staff-plus engineering
	Where do Staff-plus engineers fit into the org?
	Managing Staff-plus engineers
	Designing a Staff-plus interview loop
	Staff-plus career ladders

