
Keeping Master Green at Scale
Sundaram Ananthanarayanan

Uber Technologies

Masoud Saeida Ardekani

Uber Technologies

Denis Haenikel

Uber Technologies

Balaji Varadarajan

Uber Technologies

Simon Soriano

Uber Technologies

Dhaval Patel

Uber Technologies

Ali-Reza Adl-Tabatabai

Uber Technologies

Abstract
Giant monolithic source-code repositories are one of the

fundamental pillars of the back end infrastructure in large

and fast-paced software companies. The sheer volume of ev-

eryday code changes demands a reliable and efficient change

management system with three uncompromisable key re-

quirements — always greenmaster, high throughput, and low

commit turnaround time. Green refers to a master branch

that always successfully compiles and passes all build steps,

the opposite being red. A broken master (red) leads to de-

layed feature rollouts because a faulty code commit needs

to be detected and rolled backed. Additionally, a red master

has a cascading effect that hampers developer productivity—

developers might face local test/build failures, or might end

up working on a codebase that will eventually be rolled back.

This paper presents the design and implementation of

SubmitQueue. It guarantees an always green master branch

at scale: all build steps (e.g., compilation, unit tests, UI tests)

successfully execute for every commit point. SubmitQueue

has been in production for over a year, and can scale to

thousands of daily commits to giant monolithic repositories.

ACM Reference Format:
Sundaram Ananthanarayanan, Masoud Saeida Ardekani, Denis

Haenikel, Balaji Varadarajan, Simon Soriano, Dhaval Patel, and Ali-

Reza Adl-Tabatabai. 2019. Keeping Master Green at Scale. In Four-
teenth EuroSys Conference 2019 (EuroSys ’19), March 25–28, 2019,
Dresden, Germany. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3302424.3303970

1 Introduction
Giant monolithic source-code repositories (monorepos here-

after) form one of the fundamental pillars of backend in-

frastructure in many large, fast-paced software companies.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6281-8/19/03.

https://doi.org/10.1145/3302424.3303970

Recent studies [27, 38] have shown that themonolithic model

of source code management results in simplified dependency

management, unified versioning, ease of collaboration, im-

proved code visibility, and development velocity.

As shown by Perry et al. [37], concurrently committing

code changes by thousands of engineers to a big repository,

with millions of lines of code, may lead to a master breakage

(e.g., compilation error, unit test failure, integration test fail-

ure, and unsignable artifact). Tracking down and rolling back

the faulty change is a tedious and error-prone task, which

very often needs human intervention. Since developers may

potentially develop over a faulty master (mainline hereafter),

their productivity may get hampered substantially. Addition-

ally, a breakage in the mainline can cause delays in rolling

out new features.

For example, prior to the launch of a new version of our

mobile application for riders, hundreds of changes were com-

mitted in a matter of minutes after passing tests individually.

Collectively though, they resulted in substantial performance

regression, which considerably delayed shipping the appli-

cation. Engineers had to spend several hours bisecting the

mainline in order to identify a small list of changes that

caused performance regressions. New changes further aggra-

vated the problem such that the mainline required blocking

while the investigation continued.

To prevent the above issues, the monorepo mainline needs

to remain green at all times. A mainline is called green if all

build steps (e.g., compilation, unit tests, UI tests) can success-

fully execute for every commit point in the history. Keeping

the mainline green allows developers to (i) instantly release

new features from any commit point in the mainline, (ii) roll

back to any previously committed change, and not neces-

sarily to the last working version, and (iii) always develop

against the most recent and healthy version of the monorepo.

To guarantee an always greenmainline, we need to guaran-

tee serializability among developers’ requests called changes.
Conceptually, a change comprises of a developer’s code patch

padded with some build steps that need to succeed before

the patch can be merged into the mainline. Therefore, com-

mitting a change means applying its patch to the mainline

HEAD only if all of its build steps succeed. Observe that

totally ordering changes is different from totally ordering

1

https://doi.org/10.1145/3302424.3303970
https://doi.org/10.1145/3302424.3303970
https://doi.org/10.1145/3302424.3303970


EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

code patches, which a conventional code management sys-

tem (e.g., git server) does. While the latter can still lead to

a mainline breakage, totally ordering changes guarantees a

green mainline since it ensures that all build steps succeed

before committing the patch to the mainline.

In addition to ensuring serializability, the system also

needs to provide SLAs on how long a developer would need

to wait before her changes are merged into the mainline,

called turn-around time. Ideally, this has to be small enough

that engineers are willing to trade speed for correctness (i.e.,

always green mainline).

Ensuring the above two properties at scale is challenging.

The system needs to scale to thousands of commits per day

while it may take hours to perform all build steps. For ex-

ample, performing UI tests of an iOS application requires

compiling millions of lines of code on Mac Minis, upload-

ing artifacts to different iPhones, and running UI tests on

them. Additionally, the emergence of bots that continuously

generate code (e.g., Facebook’s Configurator [42]), further

highlights the need for a highly scalable system that can

process thousands of changes per day. Thus many existing

solutions try to only alleviate, rather than eliminate, the

aforementioned issues by building tools [38, 47] for rapid

detection and removal of faulty commits.

This paper introduces a changemanagement system called

SubmitQueue that is responsible for continuous integration

of changes into the mainline at scale while always keep-

ing the mainline green. Based on all possible outcomes of

pending changes, SubmitQueue constructs, and continuously

updates a speculation graph that uses a probabilistic model,

powered by logistic regression. The speculation graph allows

SubmitQueue to select builds that are most likely to succeed,

and speculatively execute them in parallel. Our system also

uses a scalable conflict analyzer that constructs a conflict

graph among pending changes. The conflict graph is then

used to (1) trim the speculation space to further improve the

likelihood of using remaining speculations, and (2) deter-

mine independent changes that can commit in parallel. In

summary, this paper makes the following contributions:

• Based on our experience, we describe the problem

space and real challenges of maintaining large monore-

pos, and why it is crucial to keep the mainline green

all the time.

• We introduce our change management system called

SubmitQueue, and detail its core components. The

main novelty of SubmitQueue lies in picking the right

set of techniques, and applying them together for build-

ing a highly scalable change management system.

• We evaluate SubmitQueue, compare it against similar

approaches, and report how SubmitQueue performs

and scales in production.

The outline of this paper is as follows: we first review

background work in the next section. Section 3 explains the

development life cycle, and gives a high level overview of

SubmitQueue. We explain our speculation model and conflict

analyzer in Section 4 and Section 5, respectively. Section 6 ex-

plains how SubmitQueue performs build steps. SubmitQueue

implementation and evaluation are discussed in Section 7

and Section 8. We review additional related work in Section 9.

We discuss limitations and future work in Section 10, and

conclude the paper in Section 11.

2 Background
2.1 Intermittently Green Mainline
The trunk-based development approach typically commits a

code patch into the mainline as soon as it gets approved, and

passes pre-submission tests. A change management system

then launches an exhaustive set of tests to make sure that

no breakage exists, and all artifacts can be generated. In case

an error is detected (e.g., due to a conflict or a failing test

case), the system needs to roll back the committed change.

However, since several patches could have been committed

in the meantime, detecting and reverting the faulty patch is

tedious and error-prone. In many cases, build sheriffs and

engineers need to get involved in order to cherry-pick a set

of patches for roll backs. Besides, a red mainline has the

following substantial drawbacks:

• Cost of delayed rollout: for many companies, the cost

of delaying rollouts of new features or security patches,

even for a day, can result in substantial monetary loss.

• Cost of rollbacks: in case an issue arises with a re-

lease, engineers can only roll back to the last working

version, and not any arbitrary version.

• Cost of hampered productivity: a red mainline can

significantly affect productivity of engineers. At the

very least, engineers might face local test and build

failures. Even worse, they can end up working on a

codebase that will eventually be rolled back.

To alleviate the above issues, software companies try to

minimize post-submit failures by building pre-submit in-

frastructures (e.g., Google’s presubmit infrastructure [38]),

which tests patches before committing them to the mainline.

Pre-submit testing approach solely focuses on individual

changes, and does not consider concurrent changes. There-

fore, testing infrastructures still need to (1) perform tests

(e.g., integration tests) on all affected dependencies upon

every commit, (2) quickly identify patches introducing re-

gressions [47], and (3) ultimately roll back the faulty patch

in case of a breakage. These steps are commonly referred to

as post-submit testing.

Figure 1 shows the probability of real conflicts as the num-

ber of concurrent (i.e., pending) and potentially conflicting

changes increases for our Android and iOS monorepos over

the course of nine months. Roughly speaking, n concurrent

changes are considered potentially conflicting if they touch

the same logical parts of a repository. On the other hand, n
2



Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

2 4 6 8 10 12 14 16
# Concurrent and Potentially Conflicting Changes

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

. o
f R

ea
l C

on
f. Android iOS

Figure 1. Probability of real conflicts as the number of con-

current and potentially conflicting changes increases.

concurrent changes have real conflicts if all the following

conditions hold: (1) applying changes 1 to n − 1 do not lead

to a mainline breakage, (2) applying the nth change individ-

ually does not break the mainline, and (3) applying all the

changes together results in a master breakage. Consequently,

the nth change must have a real conflict with one or more

of 1 to n − 1 changes. Therefore, pre-submit tests cannot

detect these real conflicts, and they can only be captured

post-submit. Observe that with even two concurrent and

potentially conflicting changes, there is a 5% chance of a

real conflict. This number grows to 40% with only 16 con-

current and potentially conflicting changes. This shows that,

despite all the efforts to minimize mainline breakages, it is

very likely that the mainline experiences daily breakages due

to the sheer volume of everyday code changes committed to

a big monorepo.

Using data collected over one year, Figure 2 plots proba-

bility of a mainline breakage as change staleness increases.

Change staleness is measured as how old a submitted change

is with respect to the mainline HEAD at the time of submis-

sion. As expected, the probability of a mainline breakage

increases as change staleness increases. However, observe

that even changes with one to ten hour staleness have be-

tween 10% to 20% chance of making the mainline red. Thus,

while frequent synchronization with the mainline may help

avoid some conflicts, there is still a high chance of a breakage.

2.2 Always Green Mainline
The simplest solution to keep the mainline green is to en-

queue every change that gets submitted to the system. A

change at the head of the queue gets committed into the

mainline if its build steps succeed. For instance, the rust-

project [9] uses this technique to ensure that the mainline

remains healthy all the time[2]. This approach does not scale

as the number of changes grows. For instance, with a thou-

sand changes per day, where each change takes 30 minutes to

pass all build steps, the turnaround time of the last enqueued

change will be over 20 days.

An obvious solution for scalability limitations of a single

queue is to batch changes together, and commit the whole

100 101 102

Change Staleness (hour)

0.0
0.2
0.4
0.6
0.8
1.0

Pr
ob

. o
f B

re
ak

ag
e Android iOS

Figure 2. Probability of a mainline breakage for iOS/Android

monorepos as change staleness increases.

batch if all build steps for every change in the batch suc-

ceed. Otherwise, the batch needs to get divided into smaller

batches, and get retried. As the batch size grows, which is

the case when there are thousands of commits every day,

the probability of failure (e.g., due to a conflict) increases

significantly. This leads to batches getting divided and re-

tried frequently. Therefore, SLAs cannot be guaranteed as

they would vary widely based on how successful changes

are as well as the incoming rate of changes. In addition, this

approach also suffers from scalability issues since we still

need to test and build one unit of batch at a time.

Chromium uses a variant of this approach called Commit

Queue [4] to ensure an always green mainline. In Commit

Queue, all pending changes go through two steps before

getting merged into the mainline. The first step is called pre-

commit queue where the system tries to compile a change.

Changes passing the first step are picked every few hours

by the second step to undergo a large suite of tests which

typically take around four hours. If the build breaks at this

stage, the entire batch gets rejected. Build sheriffs and their

deputies spring into action at this point to attribute failures

to particular faulty changes. Non-faulty changes, though,

need to undergo another round of batching, and can only get

accepted if no faulty change exists in a round. This approach

does not scale for fast-paced developments as batches often

fail, and developers have to keep resubmitting their changes.

Additionally, as mentioned earlier, finding faulty changes

manually in large monorepos with thousands of commits

is a tedious and error-prone process, which results in long

turnaround times. Finally, observe that this approach leads

to shippable batches, and not shippable commits. Thus, a

second change that fixes an issue of the first change must be

included in the same batch in order for the first change to

pass all its tests. Otherwise, the first patch will never succeed.

Optimistic execution of changes is another technique be-

ing used by production systems (e.g., Zuul [12]). Similar to

optimistic concurrency control mechanisms in transactional

systems, this approach assumes that every pending change

in the system can succeed. Therefore, a pending change

starts performing its build steps assuming that all the pend-

ing changes that were submitted before it will succeed. If a

3



EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

Revisiona

Change1

1. Create Change

Change2

Monorepo2. Request Modification

Submit 
Queue

5. Submit Change

6. Commit

4. Approve Change

3. Amend Change

Developer Reviewer1

Reviewer2

Figure 3. Development Life Cycle

change fails, then the builds that speculated on the success

of the failed change needs to be aborted, and start again with

new optimistic speculation. Similar to the previous solutions,

this approach does not scale and results in high turnaround

time since failure of a change can abort many optimistically

executing builds. Moreover, abort rate increases as the prob-

ability of conflicting changes increase (Figure 1). In Section 8,

we will empirically evaluate the performance of the solutions

explained in this section.

3 Dev Life Cycle & System Overview
In this section, we first briefly introduce the development life

cycle, and define the terms that will be used throughout the

paper. We then give a high level overview of SubmitQueue,

and present its architecture.

3.1 Development Life Cycle
Figure 3 presents the life cycle of our development. A devel-

oper starts by creating a feature branch from the mainline’s

last commit point, called HEAD. She continuously commits

her code locally. Once the developer finishes, she submits her

code for reviews (step 1). This results in creating a revision

along with a change. Conceptually, a change comprises of a

code patch, required build steps along with some metadata,

including author and change description. A revision is sim-

ply a container for storing multiple changes. Depending on

code reviews (step 2), a developer may further modify her

code, and amend her changes (step 3) until her change gets

approved (step 4). Once a change is approved, a developer

submits (or lands) the change to SubmitQueue (step 5).

SubmitQueue guarantees that the change’s patch gets

merged into the mainline’s HEAD if upon applying the patch,

all build steps succeed, and the mainline remains green. For

instance, a build step can involve unit tests, integration tests,

UI tests, or generating artifacts. A change is called landed (or

committed), once its corresponding patch gets committed

into the mainline’s HEAD.

3.2 SubmitQueue Overview
SubmitQueue guarantees an always green mainline by pro-

viding the illusion of a single queue where every change

gets enqueued, performs all its build steps, and ultimately

Determine 
Conflicts

Conflict Analyzer

Monorepo

API Service Submit 
Change

Core Service

Planner Engine

…

Schedule 
BuildsBuild Controller

Select Builds

Speculation Engine

Conflict Graph Speculation Graph

Push Changes

Commit Change’s Patch

Figure 4. SubmitQueue Architecture

merged with the mainline branch if all build steps succeed.

Figure 4 shows the high level architecture of SubmitQueue.

Upon submitting a change to SubmitQueue through the

API service (i.e., step 5 in Figure 3), SubmitQueue enqueues

the change in a distributed queue. The core service then

needs to perform all necessary build steps for every enqueued

(i.e., pending) change, and either lands the change, or aborts

it along with a reason.

The core service uses a planner engine to orchestrate exe-

cutions of pending changes. In order to scale to thousands of

changes per day while ensuring serializability, the planner

engine speculates on outcomes of pending changes using a

speculation engine, and executes their corresponding builds

in parallel by using a build controller.
The planner engine periodically contacts the speculation

engine, and selects speculation builds that are most likely

to succeed. In turn, the speculation engine uses a proba-

bilistic model, powered by logistic regression, to compute

likelihoods of speculations succeeding.

The core service also contains a scalable conflict analyzer
that constructs a conflict graph among pending changes.

The conflict graph helps the speculation engine to (1) trim

the speculation space to further improve the likelihood of

using remaining speculations, and (2) determine independent

changes that can commit in parallel.

Based on the selected builds, the planner engine then

performs the following actions: (1) schedules executions of

selected builds, returned by the speculation engine, through

the build controller, (2) aborts builds that do not exist in the

latest set of selected builds, but were scheduled previously,

and (3) commits a change’s patch into the monorepo (i.e.,

step 6 in Figure 3) once it is safe.

4 Probabilistic Speculation
Every change submitted to SubmitQueue has two possible

outcomes: (1) All build steps for the change succeed, and it

gets committed (i.e., its patch gets merged into the mainline).

(2) Some build step fails, and the change is rejected. Therefore,

if we can predict the outcome of a change, then we can

4



Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

B1

B2 B1.2

B3 B2.3 B1.3 B1.2.3

B1 fails à C1 rejects B1 succeeds à C1 commits

B2 fails à C2 rejects

B2 succeeds à C2 commits B12 succeedsàC2 commits

B12 fails à C2 rejects

Figure 5. Speculation tree of builds and their outcomes for

changes C1,C2,C3

precompute the result of committing concurrent changes

under this speculation.

Let H denote the current HEAD, and C1, C2 represent the

changes that need to be committed into the mainline branch.

In order to land C1, we need to merge C1 into H , denoted as

H ⊕ C1, and make sure that all build steps succeed. Let B1

denote the build steps for H ⊕ C1, and B1.2 represents build

steps for H ⊕ C1 ⊕ C2.

By assuming that B1 has a high probability to succeed, we

can proactively start executing B1.2 in parallel with B1. If

B1 succeeds, we can use the precomputed result of B1.2 to

determine if C2 can commit or not. If the prediction does

not hold (i.e., B1 fails), then we need to build C2 alone by

running B2. Therefore, the key challenge is to determine

which set of builds we need to run in parallel, in order to

improve turnaround time and throughput, while ensuring an

always green mainline. To this end, the speculation engine

builds a binary decision tree, called speculation tree, anno-
tated with prediction probabilities for each edge. This allows

the planner engine to select the builds that are more likely

to succeed, and speculatively execute them in parallel.

Figure 5 shows the speculation tree for changesC1,C2, and

C3 where C1 is the first submitted change to SubmitQueue,

andC3 is the last submitted change. We note that in this sec-

tion, and for simplicity, we assume that all pending changes

conflict with each other. In the next section, we explain how

we detect independent changes, and change the speculation

tree to a speculation graph.

4.1 Speculate Them All
The fastest and most expensive approach is to speculate on

all possible outcomes for every pending change by assuming

that the probability of committing a change is equal to the

probability of rejecting a change. For instance, we need to

execute all the seven builds shown in Figure 5 in order to

commit C1, C2, C3. Therefore, we would need to perform

2
n − 1 builds for n pending changes.

However, we do not need to speculate on all the possible

builds. For example, consider the example in Figure 5. If B1

succeeds, andC1 can be committed, the result of B2 (i.e., build

steps forH ⊕C2) becomes irrelevant since now we can either

commit C1 or C1 ⊕ C2. Thus B2 can be stopped. Similarly, if

B1 fails, and C1 gets rejected, then B1.2 containing both C1

andC2 can never be successful, and should be stopped. Thus,

depending on the outcome of B1, either B2 or B1.2 becomes

irrelevant, and its computation is wasted. Likewise, for C3,

only one of {B3,B1.3,B2.3,B1.2.3} is needed to commit C3

when result of B1, B2 or B1.2 becomes known.

To generalize, only n out of 2
n − 1 builds will ever be

needed to commit n pending changes. Considering that the

system receives hundreds of changes an hour, this approach

leads to substantial waste of resources since the results of

most speculations will not be used.

4.2 Probabilistic Modeling
Instead of executing on all possible builds, SubmitQueue

uses a probabilistic model, powered by logistic regression,

to select and execute builds that are more likely to succeed.

4.2.1 Value of Build
Considering a set of changes C, the value of building these

changes can be measured as

VBC = BBC . P
needed
BC

where Pneeded
BC

is the probability that the result of build BC
will be used to make decision to commit or reject a set of

changes C. BBC is the benefit (e.g., monetary benefit) ob-

tained by performing the build on the set of changes C. In

this paper, and for the sake of simplicity, we assume the

same benefit for all builds. In practice, we can assign differ-

ent values to different builds. For instance, builds for certain

projects or with certain priority (e.g., security patches) can

have higher values, which in turn will be favored by Sub-

mitQueue. Alternatively, we may assign different quotas to

different teams, and let each team manages the benefits of

its changes. In our current implementation, we consider the

benefit of all builds to be one.

Consider the speculation tree shown in Figure 5. In this

example, there are three pending changes, namedC1,C2 and

C3. The root of the tree, B1, is always needed as it is used to

determine if C1 can be committed safely. Thus, Pneeded
B1

= 1.

B1.2 is only needed when B1 succeeds. If B1 fails, B1.2 is not

needed, but B2 is needed. Thus,

Pneeded
B1.2

= Psucc
B1

Pneeded
B2

= 1 − Psucc
B1

(1)

The probability that an individual change, Ci , succeeds (de-

noted as Psucc
Ci

) is equal to the probability that its build in-

dependently succeeds: Psucc
B1

= Psucc
C1

. By substituting the

5



EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

probability of successful builds in Equation 1, we get:

Pneeded
B1.2

= Psucc
C1

Pneeded
B2

= 1 − Psucc
C1

(2)

The above equations can be extended to builds in the next

level: B1.2.3 is only needed under the condition that both B1

and B1.2 succeed. This can be written as

Pneeded
B1.2.3

= Psucc
B1

. Psucc
B1.2 |B1

(3)

where Psucc
B1.2 |B1

denotes the probability that B1.2 succeeds

given the success of B1. Let’s consider the inverse. There are

two conditions in which B1.2 will fail given B1 succeeds.

1. C2 fails individually when tested against the current

HEAD. For instance, it can fail because of a compilation

error, a unit test failure, or a UI test failure.

2. C2 conflicts with C1, denoted as P
conf
C1,C2

. A conflict im-

plies that C2 succeeds individually against the current

HEAD but fails when combined with C1. Examples

of conflicts are merge conflicts, or unit tests failures

when both changes are applied.

Based on the above conditions, we can derive

Psucc
B1.2 |B1

= Psucc
C2

− P
conf
C1,C2

(4)

By substituting Psucc
B1.2 |B1

in Equation 3 with Equation 4, we

get:

Pneeded
B1.2.3

= Psucc
C1

. (Psucc
C2

− P
conf
C1,C2

) (5)

Consequently, by determining the probability that a change

succeeds, and the probability that some changes conflict, we

can compute the value of builds. This allows SubmitQueue

to schedule builds with the highest value in order to commit

pending changes.

We observed that statically assigning Psucc
Ci

and P
conf
C1,C2

based on heuristics results in sub-optimal selection of builds,

and high turnaround time. This is because the penalty of

mis-speculation, with hundreds of commits every hour and

long build times, is huge. Additionally, by statically assigning

probabilities, the system is not able to react to build successes

or failures.

SubmitQueue uses the conventional regression model for

predicting probabilities of a change success or a change fail-

ure. As we will show in Section 8, we observed that by cor-

rectly estimating Psucc
Ci

and P
conf
Ci ,Cj

, SubmitQueue’s perfor-

mance becomes close to the performance of a system with

an oracle that can accurately foresee the success/failure of a

build. Section 7 explains how the regression model is trained,

and used by SubmitQueue.

4.2.2 Speculating Independent Changes
In the previous section, we considered cases where changes

can potentially conflict with each other. However, in many

cases, changes do not conflict with each other. For instance,

let’s consider C1, C2 where C1 changes a README file in a

B1 B2

B1.2.3B1.3B2.3B3

B1 fails
B2 fails

B1 fails
B2 succeeds

B1 succeeds
B2 fails

B1 succeeds
B2 succeeds

Conflict Graph Speculation Graph

C1 C2

C3

Figure 6. Conflict graph and speculation graph for indepen-

dent C1 and C2 changes both conflicting with C3

service while C2 introduces a feature in a mobile app. If we

were to use the previous approach and speculate on C1’s

success while testing C2, then probability of success of B1.2,

given that P
conf
C1,C2

=0 is:

Psucc
B1.2
= Psucc

C1

. Psucc
C2

This implies that if two changes are completely indepen-

dent, then building them individually and committing them

in parallel has a higher probability to succeed than build-

ing them together. In the next section, we explain how the

speculation engine uses the conflict analyzer to determine

whether two changes conflict or not.

5 Conflict Analyzer
In the previous section, we assumed that all changes conflict

with each other. Therefore, the result of our speculation

model is always a tree (e.g., Figure 5) where the tree root is

the first enqueued pending change.

By determining independent changes, the speculation en-

gine can (1) change the speculation tree into a speculation

graph where independent changes can get committed in

parallel, and (2) trim unnecessary builds from the graph.

First consider the scenario depicted in Figure 6. In this

example,C1 andC2 do not conflict with each other while both

of them conflict withC3. As explained in the previous section,

since C1 and C2 are independent, B1 and B2 can execute in

parallel to determine the outcome of the two changes. On the

other hand, since C3 potentially conflicts with both C1 and

C2, C3 needs to speculate on both C1 and C2 which results

in four builds as shown in Figure 6. Observe that this is

equal to the number of speculation builds for C3 depicted in

Figure 5. Therefore, taking the conflict graph into account

in this example solely helps C2 as it only requires one build,

and can commit independently.

Figure 7 depicts a second example whereC1 conflicts with

bothC2 andC3 whileC2 andC3 are independent. As a result,

unlike the example shown in Figure 5, there are only two

6



Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

B1

B2B1.2B3B1.3

B1 succeeds B1 fails B1 succeeds B1 fails

Revision Conflict Graph Speculation Graph

C1

C2 C3

Figure 7. Conflict graph and speculation graph for C1 con-

flicting with both C2 and C3

builds to consider for C3 and the choice is solely based on

C1. Therefore, the total number of possible builds decreases

from seven to five.

5.1 Build Systems & Targets
In order to build a conflict graph among pending changes, the

conflict analyzer relies on on the build system. A build system

(e.g., Bazel [1], Buck [3]) partitions the code into smaller

entities called targets. Roughly speaking, a target is a list of

source files, their dependencies along with a specification on

how these entities can be translated into one or more output

files. The directed acyclic graph of targets are then executed

in a topological order such that the executed build actions

are hermetic.

5.2 Conflict Detection
Every change modifies a set of build targets, which is a tran-

sitive closure of targets whose source files are modified by

the change along with the set of targets that depend on them.

Roughly speaking, two changes conflict if they both affect a

common set of build targets.

We associate every build target with a unique target hash

that represents its current state. We then use target hashes

to detect which build targets are affected by a change. Algo-

rithm 1 demonstrates how a target hash is computed for a

given target. First, we find all the dependencies of a target,

recursively compute their target hashes, and update a mes-

sage digest with these hashes (lines 3 to 5). Second, we find

all the source files that the target depends on, and update the

message digest with their contents (lines 6 to 8). Third, we

convert the message digest to a target hash - a fixed length

hash value.

Formally, let δH ⊕Ci denote a set of targets affected by Ci
against HEAD. An affected target is defined as a 2-tuple

(name,hash) where name represents the target’s name, and

hash represents the target’s hash value after applying Ci .

Also, let ∩name denote intersection on target names. Thus,

Algorithm 1 Calculating Target Hash Algorithm

1: function thash(tarдet )
2: md ← ∅
3: deps ← dependentTargetsOf(tarдet )
4: for dep ∈ deps do
5: md ←md ⊕ thash(dep)

6: srcs ← sourceFilesOf(tarдet )
7: for src ∈ srcs do
8: md =md ⊕ contentsOf(src))

9: return hash(md)
10:

δH ⊕Ci ∩name δH ⊕Cj , ∅ implies thatCi andCj conflict since

there are some common targets affected by both changes.

Two changes might still conflict even if they do not affect a

common set of targets. For example, consider the case shown

in Figure 8. The original build graph for the HEAD contains

three targets where target Y depends on target X while target

Z is independent. Numbers inside circles denote target hash

values. Applying C1 to the HEAD leads to targets X and

Y being affected. Thus, they have different target hashes

compared to target X and Y in the original build graph. More

precisely, δH ⊕C1
= {(X , 4), (Y , 5)}. After applying C2 to the

HEAD, target Z alongwith its dependencies change: δH ⊕C2
=

{(Z , 6)}. Observe that while these two changes conflict with

each other, simply computing the intersection of affected

targets does not yield any conflict.

Consequently, to accurately determine two independent

changes, we also need to make sure that every hash of an

affected target after applying both changes to the HEAD is

either observed after applying the first change to the HEAD,

or observed after applying the second change to the HEAD. If

neither holds, it implies that the composition of both changes

results in a new affected target, and two changes conflict.

Formally,Ci conflicts withCj if the following equation holds.

δH ⊕Ci ∪ δH ⊕Cj , δH ⊕Ci ⊕Cj (6)

For instance, in Figure 8,δH ⊕C1
∪δH ⊕C2

= {(X , 4), (Y , 5), (Z , 6)}
while δH ⊕C1⊕C2

= {(X , 4), (Y , 5), (Z , 7)} .
Determining whether two changes conflict based on the

above approach requires building the target graphs four

times using H , H ⊕ Ci , H ⊕ Cj , and H ⊕ Ci ⊕ Cj . Therefore,

for committing n changes, we need to compute the build

graphs approximately n2 times. Since it may take several

minutes to compute the build graph for a change on a big

monorepo with millions of lines of code, the above solution

cannot scale to thousands of commits per day.

Observe that Equation 6 is only needed if a build graph

changes as a result of applying a change. We observed that

only 7.9% of changes actually cause a change to the build

graph for the iOS monorepo over a span of five months.

Therefore, if the build graph remains unchanged, we just

need to use the intersection of changed targets to decide

7



EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

Original Build Graph for H Build Graph for H ⊕ C1 Build Graph for H ⊕ C2

Target Y

Target X

Target Y

Target XTarget X1

Target Y2 Target Z3 5 Target Z3

4

2

1

Target Z6

Build Graph for H ⊕ C1 ⊕ C2

5

4

Target Z7

Target X

Target Y

Figure 8. Changes in target graph with different changes. Circle denotes a target hash value. Arrow from target X to target Y

implies output of target X is required for building target Y. Shaded target node means the target is affected by the corresponding

change.

whether the two changes conflict. This leads to substantial

elimination of needed build graphs.

Alternatively, we can also determine if Ci and Cj conflict

by solely computing a union of build graphs forH ,H⊕Ci , and

H ⊕Cj instead of also computing a build graph forH ⊕Ci ⊕Cj .

This approach requires n build graphs for detecting conflicts

among n changes.

Let GH denote a build graph at HEAD where a node is a

target, and an edge is a dependency between two nodes. The

following algorithm determines if two changes conflict:

• Step 1: we first build a union graph among GH , GH ⊕Ci ,

and GH ⊕Cj as follows: for every node in any of these build

graphs, we create a corresponding node in the union graph.

Every node in the union graph contains all the target

hashes of its corresponding nodes in the individual build

graphs. Precisely, a node in the union graph is a 4-tuple

of target name and all of its corresponding hashes in GH ,

GH ⊕Ci , and GH ⊕Cj . For example, considering Figure 8, we

will have the following nodes: (A, 2, 5, 2), (B, 1, 4, 1), and
(C, 3, 3, 6). Lastly, we will add an edge between two nodes

in the union graph if there exists an edge between its

corresponding two nodes in any of the build graphs.

• Step 2: a node is tagged as affected by Ci (resp. Cj ) if its

target hash in GH is different from its target hash in GH ⊕Ci
(resp. GH ⊕Cj ). Considering the example shown in Figure 8,

targets X and Y are tagged affected by C1, and target Z is

tagged affected by C2 in the union graph.

• Step 3: we then traverse the union graph in a topological

order, and mark a visiting node as affected byCi (resp.Cj )

if any of its dependent nodes is affected by Ci (resp. Cj ).

Therefore, in our example, target Z is tagged affected by

both C1 and C2.

• Step 4: Ci and Cj conflict if there exists a node that is af-

fected by bothCi andCj . Also conservatively, we consider

that Ci conflicts with Cj if adding an edge to the union

graph results in a cycle. We note that a cycle case has never

happened in production so far.

6 Planner Engine & Build Controller
Based on the number of available resources, the planner en-

gine contacts the speculation engine on every epoch, and

receives a prioritized list of builds needed. The planner en-

gine then terminates builds that are currently running, but

are not part of the received list. It then schedules new builds

according to their priorities in the list using the build con-

troller. In turn, the build controller employs the following

techniques to efficiently schedule builds.

Minimal Set of Build Steps. Instead of performing all build

steps, the build controller eliminates build steps that are be-

ing executed by prior builds. For instance, when scheduling

B1.2.3 (build steps for H ⊕C1 ⊕C2 ⊕C3), the build controller

can eliminate the build steps that are already performed by

prior builds (i.e., B1 or B1.2). Therefore, the build controller

only needs to perform build steps for targets affected by C3

(i.e., δH ⊕C1⊕C2⊕C3
− δH ⊕C1⊕C2

).

Load Balancing. Once the list of affected targets is deter-

mined, the build controller uniformly distributes the work

among the available worker nodes. Accordingly, it maintains

the history of build steps that were performed, along with

their average build durations. Based on this data, the build

controller assigns build steps to workers such that every

worker has an even amount of work.

Caching Artifacts. In order to further improve the turn-

around times, the build controller also leverages caching

mechanisms that exist in build systems to reuse generated

artifacts, instead of building them from scratch.

7 Implementation
7.1 API & Core Services
SubmitQueue’s API Service is a stateless backend service

that provides the following functions: landing a change, and

getting the state of a change. The service is implemented in

5k lines of Java using Dropwizard [6] - a popular Java frame-

work for developing RESTful web services. It also features a

web UI using cycle.js [5] to help developers track the state

of their changes.

8



Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

The core service is implemented with 40k lines of Java

code. It uses Buck [3] as the underlying build system for

constructing conflict graphs, MySQL as the backend storage

system, Apache Helix for sharding queues across machines,

and RxJava for communicating events within a process.

One challenge in dealing with a speculation graph is the

number of builds that need to be considered to find the most

valuable builds. More precisely, for n pending changes in

the system, the speculation engine needs to consider and

sort 2
n
builds in the worst case. In order to scale to hun-

dreds of concurrent pending changes, SubmitQueue uses

a greedy best-first algorithm that visits nodes having the

highest probability first. Because edges in the speculation

graph represent the probability a path is needed, the value

of a node always goes down as the path length increases.

Hence, the greedy best-first approach helps SubmitQueue to

navigate the speculation graph optimally in memory while

scaling to hundreds of pending changes per hour. Observe

that the required space complexity of this approach is O(n).

7.2 Model Training
We trained our success prediction models predictSuccess(Ci )
and predictConflict(Ci ,Cj ) that estimate Psucc

Ci
and P

conf
Ci ,Cj

in

a supervised manner using logistic regression. We selected

historical changes that went through SubmitQueue along

with their final results for this purpose. We then extracted

around 100 handpicked features. Our feature set is almost

identical for training both of the above models, and can be

categorized as follows:

Change. Clearly changes play the most important role in

predicting the likelihoods of a change succeeding, or con-

flicting with another change. Thus, we considered several

features of a change, including (i) number of affected targets,

(ii) number of git commits inside a change, (iii) number of

binaries added/removed, (iv) number of files changed along

with number of lines/hunks added or removed, and (v) status

of initial tests/checks run before submitting a change.

Revision. As explained in Section 3, a revision is a container

for storing changes. We observed that revisions with mul-

tiple submitted changes tend to succeed more often than

newer revisions. Additionally, we noticed that the nature

of a revision has an impact on its success. Therefore, we

included features such as (i) number of times changes are

submitted to a revision, and (ii) revert and test plan suggested

as part of the revision.

Developer. Developers also play a major role in determining

whether a change may succeed or not. For instance, expe-

rienced developers do due diligence before landing their

changes while inexperienced developers tend to land buggy

changesmore often. Some developersmay alsowork onmore

fragile code-paths (e.g., core libraries). Thus their initial land

attempts fail more often. Additionally, we observed that de-

veloper data helped us tremendously in detecting chances of

conflicts among changes. This is because developers work-

ing on the same set of features (or code path) conflict with

each other more often. Consequently, we selected several

developer features such as their names and proficiencies.

Speculation. The above identified features, associated with

revisions/changes, are static: they do not change over time

for a given land request. Therefore, while they can initially

help to determine likelihoods of a change succeeding or

conflicting with another change, they cannot help as Sub-

mitQueue performs different speculations. This leads to high

mis-speculation penalties when initial speculations are not

accurate. To side step this issue, the number of speculations

that succeeded or failed were also included for training.

The dataset was then divided into two sets: 70% for train-

ing the model and 30% for validating the model. The model

was trained using scikit [10] in Python, and has an accuracy

of 97%. To avoid overfitting the models and keeping the com-

putation during actual prediction fast, we also ran our model

against recursive feature elimination (RFE) [25]. This helped

us reduce the set of features to just the bare minimum.

In our best performing model, the following features had

the highest positive correlation scores: (1) number of suc-

ceeded speculations, (2) revision revert and test plans, and

(3) number of initial tests that succeeded before submitting a

change. In contrast, number of failed speculations, and num-

ber of times that changes are submitted to a revision had the

most negative weights. We also note that while developer

features such as the developer name had high predictive

power, the correlation varied based on different developers.

8 Evaluation
We evaluated SubmitQueue by comparing it against the fol-

lowing approaches:

• Speculate-all: as discussed in Section 4.1, this approach

tries all possible combinations that exist in the specu-

lation graph. Therefore, it assumes that the probability

of a build to succeed is 50%.

• Single-Queue: where all non-independent changes are
enqueued, and processed one by one, à la Bors [2].

Independent changes, on the other hand, are processed

in parallel.

• Optimistic speculation: similar to Zuul [12], this ap-

proach selects a path in the speculation graph by as-

suming that all concurrent changeswill succeed. There-

fore, a pending change starts performing its build steps

assuming that all the pending changes that were sub-

mitted before it will succeed. If a change fails, all the

builds that speculated on the success of the failed

change need to get aborted, and a new path in the

speculation graph is selected.

9



EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

0 30 60 90 120
Build Duration (minute)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

iOS Android

Figure 9. CDF of build duration for iOS/Android monorepos

0 30 60 90 120
Oracle Turnaround Time (minute)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

100
200

300
400

500

Figure 10. CDF of Oracle turnaround time for 100, 200, 300,

400, and 500 changes per hour

To compare these approaches in a more meaningful way,

we also implemented an Oracle, and normalized turnaround

time and throughput of the above approaches against it. Our

Oracle implementation can perfectly predict the outcome of

a change. Since Oracle always makes the right decision in

the speculation graph, it has the shortest turnaround time,

lowest overhead, and the best throughput.

In this section, we first study how the above approaches

impact turnaround time (Section 8.2) and throughput (Sec-

tion 8.3) as number of changes per hour and number of

workers increase. We then take a more microscopic look

at SubmitQueue, and investigate benefits of conflict ana-

lyzer, and how it helps different approaches (Section 8.4). We

present the state of our monorepo and its breakages before

SubmitQueue was launched in Section 8.5. We conclude our

evaluation section by reporting the results of our survey on

SubmitQueue in Section 8.6.

8.1 Setup
We ran all the iOS build steps in our datacenter with Mac

Minis, each equipped with 2 cores (Intel Core i7 processors,

3.3 GHz), 16 GBmemory and 512 GB of SSD storage. Our API

and core servies run on Linux machines equipped with 32

cores (Intel Core i7 processors, 3 Ghz), with 128 GB memory

and 2 TB of SSD storage.

Figure 9 plots the cumulative distribution function (CDF)

of build durations for changes submitted to our iOS and

Android monorepos in the first 9 months of 2018. Since they

have similar CDFs, we only report our evaluation results for

the iOS monorepo.

To evaluate the performance of SubmitQueue in a con-

trolled way, we selected the above changes, and ingested

them into our system at different rates (i.e., 100, 200, 300, 400

and 500 changes per hour). Thus, the only difference with

the real data is the inter-arrival time between two changes

in order to maintain a fixed incoming rate. Figure 10 shows

the CDF of turnaround time for different rates with Oracle

running under no contention (with 2000 workers). Observe

that the difference between Figure 9 and Figure 10 is in fact

the cost of serializing conflicting changes.

8.2 Turnaround Time
Figure 11 plots P50, P95 and P99 turnaround times nor-

malized against Oracle. As illustrated by Figure 11a, Sub-

mitQueue’s logistic regression model for probabilistic spec-

ulation along with conflict analyzer leads to maximum of

2.98x slower 50-percentile turnaround time, compared to

the optimal Oracle solution. Similarly, SubmitQueue’s 95-

percentile turnaround latency increases by 4x under high

contention in which not enough resources are available for

handling incoming changes (see Figure 11b). Yet, by properly

provisioning the number of worker nodes, the turnaround

time can substantially be reduced. For instance, if the maxi-

mum number of incoming changes per hour is 500, and with

500 workers, 50-percentile, 95-percentile and 99-percentile

turnaround time gets reduced to 1.2x of the Oracle’s.

On the other hand, as shown in Figure 11, the P50 turn-

around time of the Speculate-all approach suffers up to 15x,

while its P99 turnaround time increases up to 24x. Inter-

estingly though, the Optimistic approach results in better

turnaround times compared to Speculate-all. This is due to

the fact that a significant proportion of changes are expected

to succeed even under high load. Thus, speculating deep

instead of going wide helps. We observed that Single-Queue

yields the worst turnaround times. With 500 changes per

hour, P50, P95, P99 turnaround times grow 80x, 129x and

132x respectively compared to the turnaround times of the

Oracle. Due to its poor performance, we omitted the results

of Single-Queue.

As expected, turnaround time decreases as we increase

the number of workers in all the cases. However, normalized

(P50, P95 and P99) turnaround times for 200 changes per hour

is higher than normalized turnaround times for 300/400/500

changes per hour with the same number of machines. Unlike

normalized turnaround time, we observed that actual turn-

around time consistently increases as the number of changes

per hour increases. Yet, depending on production data, in

certain hours, Oracle can perform substantially better than

other approaches which results in larger gaps.

10



Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

2.56 1.77 1.49 1.38 1.26

2.57 1.87 1.59 1.47 1.42

2.52 1.87 1.44 1.31 1.28

2.98 2.04 1.92 1.72 1.54

1.83 1.00 1.02 1.00 1.00

(a) SubmitQueue P50 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

2.92 1.86 1.53 1.41 1.22

3.33 2.02 1.64 1.53 1.36

3.44 2.28 1.81 1.53 1.37

4.03 2.60 1.90 1.68 1.53

2.00 1.49 1.40 1.28 1.23

(b) SubmitQueue P95 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

2.87 1.84 1.52 1.39 1.21

3.25 2.00 1.62 1.51 1.35

3.55 2.45 1.83 1.54 1.53

3.95 2.57 1.95 1.63 1.51

2.19 1.65 1.46 1.38 1.25

(c) SubmitQueue P99 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

11.21 10.05 9.44 9.19 9.04

11.82 10.69 9.80 9.75 9.42

13.08 11.87 11.00 10.74 10.58

15.30 14.04 13.14 12.90 12.72

7.41 6.63 6.46 6.44 6.24

(d) Speculate-all P50 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

13.93 12.52 11.65 11.20 10.91

14.89 13.55 12.40 12.05 11.75

18.50 16.43 15.34 14.88 14.66

23.93 21.47 19.53 19.58 19.03

14.00 12.53 11.94 11.74 11.29

(e) Speculate-all P95 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

14.24 12.75 11.89 11.32 11.15

15.08 13.74 12.50 12.16 11.88

18.86 16.69 15.59 15.16 14.95

24.37 21.84 20.17 19.95 19.35

14.10 12.65 12.06 11.85 11.67

(f) Speculate-all P99 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

8.54 8.72 8.62 8.57 8.77

8.75 8.70 8.67 8.74 8.69

7.33 7.63 7.64 7.56 7.65

9.60 9.62 9.62 9.64 9.64

7.46 7.46 7.44 7.44 7.44

(g) Optimistic P50 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

10.03 10.15 10.13 9.99 10.06

11.40 11.42 11.41 11.50 11.48

13.32 13.40 13.58 13.33 13.40

17.93 17.95 17.40 17.98 18.00

8.43 8.43 8.40 8.40 8.23

(h) Optimistic P95 Turnaround Time

100 200 300 400 500
#Workers

500

400

300

200

100

#C
ha

ng
es

 / 
H

ou
r

10.03 10.08 10.07 9.83 9.98

11.21 11.41 11.35 11.30 11.29

13.45 13.52 13.70 13.46 13.52

18.76 18.78 18.52 18.81 18.83

8.60 8.60 8.58 8.58 8.58

(i) Optimistic P99 Turnaround Time

Figure 11. Turnaround Time Normalized Against Oracle

8.3 Throughput
Figure 12 illustrates average throughput of different approaches

normalized against Oracle. SubmitQueue’s approach has the

least throughput slowdown compared with other approaches.

While under high contention, SubmitQueue experiences up

to 60% slowdown compared to Oracle, the slowdown re-

duces to around 20% with 500 workers. We observed similar

behavior with 200 changes per hour. Additionally, for 100

changes per hour, we noticed that SubmitQueue’s through-

put matches Oracle’s. Throughput results for 100 and 200

changes per hour are not included.

11



EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

100 200 300 400 500
#Workers

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t SubmitQueue Oracle

(a) 300 Changes / Hour

100 200 300 400 500
#Workers

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t Single-Q. Optimistic

(b) 400 Changes / Hour

100 200 300 400 500
#Workers

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t Speculate-all

(c) 500 Changes / Hour

Figure 12. Average throughput normalized against Oracle

100 200 300 400 500
#Workers

0.0

0.2

0.4

0.6

0.8

1.0

Tu
rn

ar
ou

nd
 Im

pr
.

SubmitQueue Oracle

(a) 300 Changes / Hour

100 200 300 400 500
#Workers

0.0

0.2

0.4

0.6

0.8

1.0

Tu
rn

ar
ou

nd
 Im

pr
.

Single-Q Optimistic

(b) 400 Changes / Hour

100 200 300 400 500
#Workers

0.0

0.2

0.4

0.6

0.8

1.0

Tu
rn

ar
ou

nd
 Im

pr
.

Speculate-all

(c) 500 Changes / Hour

Figure 13. P95 turnaround time improvement when using conflict analyzer

Among the studied solutions, Single-Queue has the worst

throughput (i.e., 95% slowdown). Surprisingly, we also ob-

served that not only does the Optimistic approach do worse

than Speculate-all, it remains unchanged as we increase the

number of workers. This is due to the fact that with the Op-

timistic approach, the system assumes that all changes will

succeed. Therefore, its throughput is limited by the number

of contiguous changes that succeed. However, since this is al-

ways less than 100 in our workload, the throughput remains

the same as we increase the number of machines.

Finally, observe that adding more workers does not have

any effect on the Speculate-all approach. Since our specu-

lation graph is deep, adding a few hundred workers does

not have any effect on throughput. However, for wide spec-

ulation graphs (i.e., more independent changes), we expect

much better performance.

8.4 Benefits of Conflict Analyzer
Figure 13 shows how the conflict analyzer improves 95-

percentile turnaround time of different approaches. The turn-

around time of Oracle improves by up to 60%with the conflict

analyzer. Likewise, both SubmitQueue and Speculate-all also

substantially benefit from the conflict analyzer as it helps

them to perform more parallel builds.

Surprisingly though, the effect of the conflict analyzer

on the Optimistic approach is only 20%. Moreover, observe

that for both the Optimistic and Single-Queue approaches,

the turnaround time improvement remains constant as we

increase the number of workers. This is due to the fact that

the build graph on the iOS monorepo is very deep (i.e., only

a handful of leaf-level nodes) resulting in a large number

of conflicts among changes. Consequently, the speculation

graph has few independent changes that can execute and

commit in parallel. Therefore, we expect substantially better

improvements when using the conflict analyzer for reposito-

ries that have a wider build graph.

8.5 Mainline State Prior to SubmitQueue
Figure 14 shows the state of iOS mainline prior to Sub-

mitQueue. Over a span of one week, the mainline was green

only 52% of the time affecting both development and roll-

outs. This clearly exhibits the need for a change management

system that guarantees an always green mainline on fast-

moving projects involving thousands of developers. Since

its launch, our mainlines have remained green at all times.

12



Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

8/31 9/1 9/2 9/3 9/4 9/5 9/6
0

25
50
75

100

Su
cc

es
s R

at
e 

/ H
ou

r 

Figure 14. State of the mainline for iOS monorepo prior to

SubmitQueue launch

8.6 Survey on Benefits of SubmitQueue
We conducted an internal survey, and asked for feedback

from developers, release engineers, and release managers.

Specifically, we sought answers to the following two ques-

tions: (1) what is the perceived impact of an always green

master on personal productivity and getting code to produc-

tion, and (2) how good is the performance of SubmitQueue

in production. Out of 40 people who answered the survey,

close to 64% had some previous experience committing to

monorepos, and 56% of responders had experience with an

always green master.

93% of survey takers believed that enforcing an always

green mainline positively impacts their personal productiv-

ity while 7% saw no impact. Also, none of the responders

claimed that an always greenmaster negatively impacts their

productivity. Similarly, 86% of responders believed that an

always green master positively impacts deploying code to

production, while only one responder thought it imposes a

negative impact.

As for the performance of SubmitQueue on the scale of

1 to 5 (where 5 is the best performance), 95% of responders

felt that SubmitQueue performance is either on par or sig-

nificantly better than prior experiences.

9 Related Work
In Section 2, we reviewed various solutions for preventing

master breakages, and different techniques for recovering

from master breakages. In this section, we focus on other

research works that are relevant to SubmitQueue, but are

not directly comparable to it.

Proactive Conflict Detection. An alternative approach to

reduce the number of regressions in a monorepo is a proac-

tive detection of potential conflicts among developers work-

ing on the same project. These solutions provide awareness

to developers, and notify them that parallel changes are

taking place. The granularity of these solutions can be file-

level [15], method-level using static-analysis [21, 24, 41],

and repository-level [16]. Yet, these solutions do not prevent

mainline breakages, and solely notify developers of potential

breakages. It is up to developers to further investigate, and

prevent a breakage. Unlike SubmitQueue, these solutions

do not scale because the number of commits that need to

be considered is extremely high in large monorepos. Ad-

ditionally, these approaches encourage developers to rush

committing their changes in order to avoid merging with

conflicting changes [20].

Transactional Systems. Transactional systems, including

distributed data stores, software transactional memories

and databases, use concurrency control schemes to ensure

that committing a transaction does not break their con-

sistency model (e.g., Serializability). To guarantee consis-

tency, they employ different concurrency control mecha-

nisms such as pessimistic 2PL mechanism (e.g., Spanner [19]

and Calvin [43]), an optimistic concurrency control mech-

anism (e.g., Percolator [36] and CLOCC [13]), or conflict

reordering mechanism (e.g., Rococo [34]). These schemes

are tailored for relatively short running transactions. Sub-

mitQueue on the other hand aims at ensuring serializability

for transactions (i.e., changes) that may need hours to finish.

Therefore, the penalty of both optimistic and pessimistic

execution is extremely high as shown in Section 8. Addition-

ally, conventional transactional systems can easily validate

a transaction to make sure that it does not conflict with an-

other transaction before committing it. SubmitQueue, on the

other hand, needs to ensure the integrity of the mainline by

performing several build steps before being able to commit

a change.

Bug & Regression Detections. Bug & regression detections

have been studied extensively by PL, software engineer-

ing, and systems communities. These works can be clas-

sified in the following categories: (i) techniques [28, 45] to

identify bugs prior to submitting changes to repositories,

(ii) tools [7, 29, 30] to find bugs after a change is submitted,

and (iii) solutions [14, 18, 31, 44] that help online engineers

and developers to detect and localize bugs post deployment.

Kamei et al. [28] and Yang et al. [45] introduce different

ML techniques to detect if a change is risky and might cause

regressions before it is submitted to a repository. To this

end, they use information such as reviews, authors, and

modified files. Similarly, SubmitQueue uses a ML model to

determine the likelihood of a change’s build succeeding or

not. However, unlike these techniques, SubmitQueue also

considers concurrent pending changes. Additionally, instead

of rejecting a change, SubmitQueue uses the outcome of its

model to determine builds that are more likely to succeed.

Developers can easily leverage many of the above tools

to detect bugs prior to deploying their code by introduc-

ing new build steps, and let SubmitQueue runs those build

steps before committing the code into a repository. For in-

stance, one can use different tools [8, 11, 22, 26, 35] to elimi-

nate NullPointerException, or detect data races by simply

adding extra build steps that need to run upon submitting

new changes.

13



EuroSys ’19, March 25–28, 2019, Dresden, Germany Ananthanarayanan et al.

Test Selection. As a number of changes along with a num-

ber of tests grow in many giant repositories, it may not be

feasible to perform all tests during builds. To address this

issue, several solutions have been proposed based on static

analysis [17, 33, 40, 46], dynamic analysis [23, 39], and data-

driven [32] using a ML model. Therefore, upon committing

a change, and instead of conducting all test cases, only a

subset of test cases are required to run.

Our build controller currently does not leverage any of

these techniques, and performs all required build steps (in-

cluding test cases) for every build. Applying the above tech-

niques is an interesting future work that can lead to substan-

tial performance improvements.

Speculative Execution. Speculative execution has been used
in almost every field in computer science, including pro-

cessors, operating systems, programming languages, and

distributed systems to name a few. SubmitQueue applies a

similar technique in order to keep the mainline green at scale

when thousands of developers commit their changes to a

mono repository every day.

10 Discussion
While SubmitQueue addresses many challenges of a change

management system, it still has some limitations. In this

section, we discuss its limitations, and future works.

Change Reordering. The current version of SubmitQueue

respects the order in which changes are submitted to the

system. Therefore, small changes that are submitted to the

system after a large change with long turnaround time (e.g.,

refactoring of a library API) need to wait for the large change

to commit/abort before committing or aborting. As future

work, we plan to reorder non-independent changes in order

to improve throughput, and provide a better balance between

starvation and fairness.

OtherMLTechniques. Our current logistic regressionmodel

has an accuracy of 97%, and performs well in production as

we showed in Section 8. Yet, exploring other ML techniques

such as Gradient Boosting for our prediction model remains

an interesting future work.

Build Preemption. As explained in Section 6, the planner

engine aborts ongoing builds if the likelihood of their success

drops, and the speculation engine returns a new set of builds

that are more likely to succeed. However, if a build is near

its completion, it might be beneficial to continue running its

build steps, instead of preemptively aborting the build. As

future work, we plan to further investigate this issue, and

only abort builds that are very unlikely to be needed.

Batching Independent Changes. SubmitQueue performs

all build steps of independent changes separately. A better

approach is to batch independent changes expected to suc-

ceed together before running their build steps. While this

approach can lead to better hardware utilization and lower

cost, false prediction can result in higher turnaround time.

Finding a balance between cost and turnaround time still

needs to be explored.

11 Conclusion
We introduced a change management system called Sub-

mitQueue that is responsible for continuous integration of

changes into the mainline at scale while keeping the main-

line green by ensuring serializability among changes. Based

on possible outcomes of pending changes, SubmitQueue con-

structs, and continuously updates a speculation graph that

uses a probabilistic model, powered by logistic regression.

The speculation graph allows SubmitQueue to select builds

that are most likely to succeed, and speculatively execute

them in parallel.

SubmitQueue also employs a conflict analyzer that con-

structs a conflict graph among pending changes in order to (1)

trim the speculation space to further improve the likelihood

of using remaining speculations, and (2) determine indepen-

dent changes that can commit in parallel. SubmitQueue has

been in production for over a year, and can scale to thousands

of daily commits to giant monolithic repositories.

Acknowledgments
We thank Raj Barik, Milind Chabbi, Kamal Chaya, Prateek

Gupta, Manu Sridharan, and Matthew Williams for their

valuable suggestions on early versions of this paper. We

also would like to thank our Shepherd, Steven Hand, and

our anonymous reviewers for their insightful feedback and

suggestions.

References
[1] 2018. Bazel. https://bazel.build/.
[2] 2018. Bors. https://github.com/graydon/bors.
[3] 2018. Buck. https://buckbuild.com/.
[4] 2018. Commit Queue. https://dev.chromium.org/developers/

tree-sheriffs/sheriff-details-chromium-os/commit-queue-overview.
[5] 2018. Cycle.js. https://cycle.js.org/.
[6] 2018. Dropwizard. https://www.dropwizard.io.
[7] 2018. Git-bisect. https://git-scm.com/docs/git-bisect.
[8] 2018. NullAway. https://github.com/uber/NullAway.
[9] 2018. Rust-lang. https://www.rust-lang.org.
[10] 2018. Scikit. http://scikit-learn.org/stable/.
[11] 2018. ThreadSanitizer. https://clang.llvm.org/docs/ThreadSanitizer.

html.
[12] 2018. Zuul. https://zuul-ci.org/.
[13] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari.

1995. Efficient Optimistic Concurrency Control Using Loosely Syn-

chronized Clocks. In International Conference on the Management of
Data (SIGMOD). 23–34.

[14] Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and

Adithya Abraham Philip. 2018. Orca: Differential Bug Localization in

Large-Scale Services. In Symposium on Operating Systems Design and
Implementation (OSDI). 493–509.

14

https://bazel.build/
https://github.com/graydon/bors
https://buckbuild.com/
https://dev.chromium.org/developers/tree-sheriffs/sheriff-details-chromium-os/commit-queue-overview
https://dev.chromium.org/developers/tree-sheriffs/sheriff-details-chromium-os/commit-queue-overview
https://cycle.js.org/
https://www.dropwizard.io
https://git-scm.com/docs/git-bisect
https://github.com/uber/NullAway
https://www.rust-lang.org
http://scikit-learn.org/stable/
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://zuul-ci.org/


Keeping Master Green at Scale EuroSys ’19, March 25–28, 2019, Dresden, Germany

[15] Jacob T. Biehl, Mary Czerwinski, Mary Czerwinski, Greg Smith, and

George G. Robertson. 2007. FASTDash: A Visual Dashboard for Fos-

tering Awareness in Software Teams. In Conference on Human Factors
in Computing Systems (CHI). 1313–1322.

[16] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011.

Proactive Detection of Collaboration Conflicts. In Symposium on the
Foundations of Software Engineering (FSE) and European Software Engi-
neering Conference (ESEC). 168–178.

[17] Ahmet Celik, Marko Vasic, Aleksandar Milicevic, and Milos Gligoric.

2017. Regression Test Selection Across JVM Boundaries. In Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). 809–820.

[18] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and

Kapil Vaswani. 2009. HOLMES: Effective Statistical Debugging via

Efficient Path Profiling. In International Conference on Software Engi-
neering (ICSE). 34–44.

[19] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J J Furman, Sanjay Ghemawat, Andrey Gubarev, Christo-

pher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,

Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David

Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-

sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and

Dale Woodford. 2012. Spanner: Google’s Globally-Distributed Data-

base. In Symposium on Operating Systems Design and Implementation
(OSDI). 251–264.

[20] Cleidson R. B. de Souza, David F. Redmiles, and Paul Dourish. 2003.

"Breaking the code", moving between private and public work in col-

laborative software development. In International Conference on Sup-
porting Group Work (GROUP). 105–114.

[21] Prasun Dewan and Rajesh Hegde. 2007. European Conference on

Computer Supported Cooperative Work (ECSCW). 159–178.

[22] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, Static De-

tection of Race Conditions and Deadlocks. In Symposium on Operating
Systems Principles (SOSP). 237–252.

[23] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical

Regression Test Selection with Dynamic File Dependencies. In Interna-
tional Symposium on Software Testing and Analysis (ISSTA). 211–222.

[24] Mário Luís Guimarães and António Rito Silva. 2012. Improving Early

Detection of Software Merge Conflicts. In International Conference on
Software Engineering (ICSE). 342–352.

[25] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik.

2002. Gene Selection for Cancer Classification using Support Vector

Machines. Machine Learning 46, 1 (01 Jan 2002), 389–422.

[26] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal

Sound Predictive Race Detection with Control Flow Abstraction. In

Conference on Programming Languages Design and Implementation
(PLDI). 337–348.

[27] Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Ed-

ward K. Smith, Collin Winter, and Emerson Murphy-Hill. 2018. Ad-

vantages and Disadvantages of a Monolithic Repository: A Case Study

at Google. In International Conference on Software Engineering (ICSE).
225–234.

[28] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,

and N. Ubayashi. 2013. A large-scale empirical study of just-in-time

quality assurance. IEEE Transactions on Software Engineering 39, 6

(2013), 757–773.

[29] Sunghun Kim, E. JamesWhitehead, Jr., and Yi Zhang. 2008. Classifying

Software Changes: Clean or Buggy? IEEE Transactions on Software
Engineering 34, 2 (2008), 181–196.

[30] S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead. 2006. Au-

tomatic Identification of Bug-Introducing Changes. In International
Conference on Automated Software Engineering (ASE). 81–90.

[31] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.

Jordan. 2005. Scalable Statistical Bug Isolation. In Conference on Pro-
gramming Languages Design and Implementation (PLDI). 15–26.

[32] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chan-

dra. 2018. Predictive Test Selection. Computing Research Repository
(CoRR) abs/1810.05286 (2018). arXiv:1810.05286 http://arxiv.org/abs/
1810.05286

[33] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell,

Rob Siemborski, and John Micco. 2017. Taming Google-scale Con-

tinuous Testing. In International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP). 233–242.

[34] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. 2014.

Extracting More Concurrency from Distributed Transactions. In Sym-
posium on Operating Systems Design and Implementation (OSDI). 479–
494.

[35] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective Static Race

Detection for Java. In Conference on Programming Languages Design
and Implementation (PLDI). 308–319.

[36] Daniel Peng and Frank Dabek. 2010. Large-scale incremental process-

ing using distributed transactions and notifications. In Symposium on
Operating Systems Design and Implementation (OSDI). 251–264.

[37] Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. 2001. Parallel

Changes in Large-scale Software Development: An Observational Case

Study. ACM Transactions on Software Engineering and Methodology 10,

3 (July 2001), 308–337.

[38] Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions

of Lines of Code in a Single Repository. Commun. ACM 59 (2016),

78–87.

[39] Gregg Rothermel and Mary Jean Harrold. 1997. A Safe, Efficient

Regression Test Selection Technique. ACM Transactions on Software
Engineering and Methodology 6, 2 (April 1997), 173–210.

[40] Barbara G. Ryder and Frank Tip. 2001. Change Impact Analysis for

Object-oriented Programs. InWorkshop on Program Analysis for Soft-
ware Tools and Engineering (PASTE). 46–53.

[41] Anita Sarma, Gerald Bortis, and Andre van der Hoek. 2007. Towards

Supporting Awareness of Indirect Conflicts Across Software Con-

figuration Management Workspaces. In International Conference on
Automated Software Engineering (ASE). 94–103.

[42] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay

Chander, Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert

Karl. 2015. Holistic Configuration Management at Facebook. In Sym-
posium on Operating Systems Principles (SOSP). 328–343.

[43] Alexander Thomson, Thaddeus Diamond, Philip Shao, and Daniel J.

Abadi. 2012. Calvin : Fast Distributed Transactions for Partitioned

Database Systems. In International Conference on the Management of
Data (SIGMOD). 1–12.

[44] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and

Yuanyuan Zhou. 2007. Triage: Diagnosing Production Run Failures at

the User’s Site. In Symposium on Operating Systems Principles (SOSP).
131–144.

[45] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun. 2015. Deep Learning for

Just-in-Time Defect Prediction. In International Conference on Software
Quality, Reliability and Security (QRS). 17–26.

[46] Lingming Zhang. 2018. Hybrid Regression Test Selection. In Interna-
tional Conference on Software Engineering (ICSE). 199–209.

[47] Celal Ziftci and Jim Reardon. 2017. Who Broke the Build?: Automat-

ically Identifying Changes That Induce Test Failures in Continuous

Integration at Google Scale. In International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). 113–
122.

15

http://arxiv.org/abs/1810.05286
http://arxiv.org/abs/1810.05286
http://arxiv.org/abs/1810.05286

	Abstract
	1 Introduction
	2 Background
	2.1 Intermittently Green Mainline
	2.2 Always Green Mainline

	3 Dev Life Cycle & System Overview
	3.1 Development Life Cycle
	3.2 SubmitQueue Overview

	4 Probabilistic Speculation
	4.1 Speculate Them All
	4.2 Probabilistic Modeling
	4.2.1 Value of Build
	4.2.2 Speculating Independent Changes


	5 Conflict Analyzer
	5.1 Build Systems & Targets
	5.2 Conflict Detection

	6 Planner Engine & Build Controller
	7 Implementation
	7.1 API & Core Services
	7.2 Model Training

	8 Evaluation
	8.1 Setup
	8.2 Turnaround Time
	8.3 Throughput
	8.4 Benefits of Conflict Analyzer
	8.5 Mainline State Prior to SubmitQueue
	8.6 Survey on Benefits of SubmitQueue

	9 Related Work
	10 Discussion
	11 Conclusion
	Acknowledgments
	References

